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This is the lecture five application of a continuous-time Markov chain in simple 

Markovian queuing models. The first lecture we have discussed the definition of a 

stochastic process in particular continuous-time Markov chain, then we have considered 

the Kolmogorov differential equation Chapman-Kolmogorov equations the transient 

solutions for the CTMC. In the second lecture, we have discussed the special case of 

continuous-time Markov chain that is birth-death process we have discussed in lecture 

two. Lecture three the special case of birth-death process it is a very important stochastic 

process that is Poisson process is discussed in the lecture three.  
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In the lecture four we have discussed the M/M/1 queuing model, that is a very special 

and important queuing model and the underlying stochastic process for the M/M/1 

queuing model that is a birth-death process with birth rates are lambda, and death rates 

are mu. In the fourth lecture we have discussed only the M/M/1 queuing model. In this 



lecture we are going to consider the other simple Markovian queuing models as an 

application of a continuous-time Markov chain. 

So, in this lecture I am planning to discuss other than M/M/1 queuing model I am going 

to discuss the simple Markovian queuing models starting with the M/M/c infinity 

queuing model, then the finite capacity model Markovian set of M/M/1/N queuing 

model. Then I am going to discuss the multi server finite capacity model that is M/M/c/K 

queuing model. After that I am going to discuss the loss system that is M/M/c/c model, 

for infinite server model that is M/M/infinity also I am going to discuss. At the end I am 

going to discuss the finite source Markovian queuing model also, whereas the other five 

models the population is infinite source. So, the last one is a finite source Markovian 

queuing model also I am going to discuss as the application of continuous-time Markov 

chain. 
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The first model is a multi server infinite capacity Markovian queuing model. The letter 

M denotes the inter arrival time is exponentially distributed with parameter lambda. The 

service time by the each server that is exponentially distributed with the parameter mu 

and all we have more than one server. Suppose you consider as a c where c is a positive 

integer, and all the servers are identical, and each server is doing the service which is 

exponentially distributed with the parameter mu which is independent of the all other 

server, and the service time is independent with the inter arrival time also. 



With this assumptions if you make a random variable x of t is the number of customers 

in the system at any time t that is a stochastic process. Since the possible values of 

number of customers in the system at any time t that is going to be 0, 1, 2 and so on; 

therefore, it is a discrete state and you are observing the queuing system at any time t 

therefore, it is a continuous time, so discrete state continuous times stochastic process, 

and if you observe the system keeps moving into the different states because of either 

arrival or the service completion from the any one of the c servers. 

So, suppose there is no customer in the system, the system moves from the state 0 to 1 by 

one arrival. So, the inter arrival time is exponentially distributed; therefore, the rate in 

which the system is moving from the state 0 to 1 is lambda like that you can visualize the 

rates for system moving from 1 to 2, 2 to 3 and so on, whereas whenever the system size 

is 1, 2 and so on till c, since we have a c number of service in the system whoever is 

entering into the system they will start getting the service immediately. Suppose the 

system goes from state 1 to 0; that means the customer enter to the system and he get the 

service immediately and the service time exponentially distributed with the parameter 

mu. Therefore, whenever the service is completed the system goes from the state 1 to 0; 

therefore, the rate is mu, whereas from 2 to 1 there are two customers in the system and 

both are under service; at any time if any one of the servers completes the service then 

the system moves from 2 to 1. 

So, the service completion will be minimum of the service time of both the servers. Since 

each server is doing the service exponentially distributed with the parameter mu; 

therefore, the minimum of two exponential and both are independent also, therefore, that 

is also going to be exponentially distributed with the sum of parameters. So, it is going to 

be parameter will be mu plus mu that is 2 mu. So, the system moves from the state 2 to 1 

will be the rate will be 2 mu, like that it will keep going till the state from c to c minus 1; 

that means we have c servers. Therefore, whenever the system size is also less than or 

equal to c that means all the customers are under service. 

Now we will discuss the rate in which system is moving from the state c plus 1 to c. The 

system state is the c plus 1; that means when the number of customer in the system that 

is c plus 1, we have c servers; therefore, one customer will be waiting for the service 

waiting in the queue. Therefore, the system is moving from c plus 1 to c that is nothing 

but one of the server has completed the service out of c servers; therefore, the rate will be 



the completion service time will be exponential distribution with the parameter c mu, not 

c plus 1 mu it is we have only c servers. 

Therefore the minimum of exponentially distributed with the parameters mu and so on 

with the c exponentially distributed random variables; therefore, that is going to be 

exponential distribution with the parameter mu plus mu plus, there are c mu’s; therefore, 

it is going to be c mu. Like that the rate will be the death rate will be c mu after c plus 1 

onwards whereas from 0 to c it will be mu, 2 mu, 3 mu and so on till c mu after that it 

will be c mu from the state from c plus 1 to c, c plus 2 to c plus 1 and so on. 

And if you see the state transition diagram you can observe that this is a birth-death 

process. So, before that let me explain what is M/M/c infinity means whenever c 

customers or c servers are any one of the c servers are available then the customers will 

get the service immediately. If all the c servers are busy then the customer has to wait till 

any one of the c servers is going to be completing their service. So, that is the way the 

system works; therefore, you will have the system size.  
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The system size the underline stochastic process is going to be a birth-death process. It is 

a special case of continuous-time Markov chain because the transitions are only the 

neighbor’s transition with the forward rate that is lambda, and backward rates are the 

death rates are going to be mu, 2 mu and so on. Therefore, this is the special case of a 

continues-time Markov chain; the underlying stochastic process for the M/M/c infinity 



model that is a birth-death process. The birth rates are lambda whereas the death rates 

depends on the n the mu n is the function of n; therefore, it is called a state-dependent 

death rates. It need not be the function n times mu it can be a function of n then we can 

use the word state-dependent. 

So, here it is a linear function. So, state-dependent death rates and the death rates are n 

times mu whenever n lies between 1 to c and the mu n is going to be c times mu for n is 

greater than or equal to c; that you can observe it from the state transition diagram also; 

the death rates are going to be c mu here also c mu and so on. Therefore, this is the birth-

death process with the state-dependent death rates. 
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Now our interest is to find out the steady-state or equilibrium solution. Since it is infinite 

capacity models if you observe the birth-death process with the infinite state space then 

you need condition, so that the steady state probability exists. So, whenever lambda by c 

mu is less than 1 you can find out the limiting probabilities. So, sometimes I use the 

letter P n, sometimes I use the word pi n, both are one and the same. So, you find out the 

steady-state probability by solving P q is equal to 0, and the summation of p I is equal to 

1. And if you recall the birth-death process of steady state probabilities the pi naught has 

the one divided by the series; whenever the denominator series converges then you will 

get the P n’s. 



So either I use P n’s or pi n’s both are one and the same. So, here summation of P i is 

equal to 1 and if you make a vector p, p times the q is equal to 0 if you solve that 

equation, and the denominator of P naught that expression that is going to be converged 

only if lambda divided by c mu is less than 1. So therefore, whenever this condition is 

there the queuing system is stable also. If you put c is equal to 1 you will get the 

M/M/1/q. So, using the normalizing condition you are getting the p naught and P naught 

is 1 divided by this. So, this is the series. So, this series is going to be converged only if 

this condition is satisfied. 

So, by solving that equation you are getting P n in terms of P naught and using 

normalizing constant you are getting a P naught; therefore, this is a steady-state also 

known as the equilibrium solution for the M/M/c infinity model. So, here we are using 

the birth-death process with the birth rates are lambda and the death rates are given in 

this form and use the same logic of the stationary distribution for the birth-death process; 

using that we are getting the steady-state or equilibrium solutions for the M/M/c model. 
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Other than the steady-state probability we can get some more measures. The first one is 

the probability that the arriving customer has to wait an arrival. What is the probability 

that the arriving customer has to wait on arrival? So, that means the number of customers 

in the system is greater than or equal to c, then only the customer has to wait. So, the 

probability you add the probability of p c, sorry p n, sorry here it is a mistake p suffix n 



where n is running from c to infinity, if you add all those probabilities that is going to be 

p c divided by 1 minus rho, and this probability is known as the Erlang’s C formula for a 

multi server infinite capacity model; that too I am denoting with the letter C of c comma 

lambda by mu 

Because you need number of servers in the system and you need lambda as well as mu; if 

I know this quantity I can find out what is the Erlang’s C formula. This is a very 

important formula; using that you can find out what is the optimal c such a way that the 

probability has to be minimum. You can find out what is optimal number of servers 

needed to have some upper bound probability of arriving customer has to wait; therefore, 

the Erlang’s C formula is very useful in performance analyses of any system.  

The next quantity is N q denotes the number of customers in the queue. So, either I use 

the letter N suffix q; earlier I used the letter q itself. So, for that I am finding the joint 

distribution of what is the probability that the number of customers in the queue is j and 

the waiting time is going to be greater than zero, W is used for the waiting time. So, the 

waiting time is going to be greater than zero. That is same as the number of customers in 

the system that is c plus j. What is the probability that j customers in the queue as well as 

the waiting time is greater than zero; that is same as what is the probability that c plus j 

customer in the system. We will do the little simplification so you will get this joint 

probability in terms of Erlang’s C formula.  
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So, using that I am finding the conditional probability, what is the conditional probability 

that j customer in the queue given that the waiting time is greater than zero. If I do little 

simplification I will get 1 minus rho times rho power j where rho is lambda divided by c 

mu. This is nothing but the probability mass function of a geometric distribution. This is 

the probability mass function of a geometric distribution; therefore, this conditional 

probability is geometrically distributed with the parameter rho. From this we can find out 

the next measure is expected number of busy service. What is the average number of 

busy servers? That is nothing but the summation of n equal to zero to c minus one n 

times p n. 

That means whenever the system size is less than c only those many servers are busy and 

with the probability. Whenever n customers or more than n customers in the system all 

the c servers are going to be busy; therefore, c times p. If you simplify you will get c 

times rho. So, that is the expected number of busy servers. Once I know the expected 

number of busy servers I can find out what is the expected number of idle servers also, it 

is a negation, that is expected number of idle server is nothing but expectation of it is a 

random variable. 

So, idle number is nothing but there are totally c servers in the system; therefore, c minus 

busy servers are capital B. Therefore, c minus B is same as i. So, the expectations 

satisfies the linear property; therefore, expectation of i is same as expectation of c minus 

B. c is a constant, and B is a random variable; therefore, it is a c minus expectation of a B 

expectation of B just now we got c times rho. Therefore, the expected number of idle 

server is c times 1 minus rho. So, other than stationary distribution for the M/M/c model 

we are getting what is the probability that arriving customer has to wait, and we are 

getting the conditional probability of j customers in the queue given that waiting time is 

greater than zero as well as this expected quantities we are getting.  
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Also we can find out what is the expected number of customers in the system; that is 

nothing but expected number is nothing but expected of the busy servers plus expected 

number in the queue. Earlier I used the notation n suffix queue; n suffix queue and queue 

are both one and the same. So, I can compute what is the expectation of queue come and 

do the little simplification. Then I can substitute expectation of queue here; therefore, I 

will get expected number of customers in the system that involves the Erlang’s C 

formula. So, this Erlang’s C formula is used to get the expected number of customers in 

the system and then later we can do some optimization over the probability expected 

number with the specified c and lambda by mu. 

So, using Little’s formula I can find out the expected time spent in the system, because I 

know what is the arrival rate and from the stationary distribution I got expected number 

in the system in a steady-state. Therefore, since I know lambda and expectation of n I 

can get expectation of r where r is the response time or so joint time is total time spent in 

the system. So, that expectation is going to be expectation of n divided by lambda; do 

little simplification, you will get expectation of r. 
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You can apply the Little’s formula in the Q level also. So, this is the system level and 

you can apply the Q level also. So, here lambda times the expectation of waiting time is 

same as expectation of number of customer in the queue. So, expectation of waiting time 

or average time is same as expectation of a Q divided by lambda. So, since the M/M/c 

infinity Q the underlying stochastic process is the birth-death process; therefore, we are 

getting the all the measures using the birth-death logic. 
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Next I am going for the finite capacity. So, the N is the capacity of the system; that 

means whenever the customers arrives and find the queue full that customer will be 

rejected. Therefore, at any time the number of customers in the system if you make it as 

a random variable and that random variable takes the possible values from zero to capital 

N; therefore, the state space is finite. The number of customers in the system makes any 

time t, that is a random variable, and you will have a stochastic process. And since the 

inter arrival time is exponentially distributed services exponential distributed only one 

server finite capacity; therefore, the underling stochastic process is a birth-death process 

with the birth rates lambda and the death rates mu.  

If you see the queue matrix for a this one infinitesimal generator matrix that is a dry 

diagonal matrix with all the half diagonals are lambdas as well as mu and the diagonals 

are minus lambda plus mu except the first term and the last term except the first row and 

last row. Our interest is to get the stationary distribution; later I going to explain the 

time-dependent solution also. So, to get the stationery distribution either you write pi Q 

is equal to zero and the summation of pi is equal to one and solve that, or you write the 

balance equation. The pi q is equal to zero that will land up a balance equation. So, some 

books write this as a balance equation, what is the inflow rate and what is the outflow 

rate? Both are going to be same whenever the system reaches the equilibrium solutions 

equilibrium state. 

Therefore, the outflow is lambda times this; the inflow is mu times lambda one. Like that 

you can go for understanding the balance equation for this state and second and so on. 

This also satisfies the time, this is also called satisfying the time reversible equation; 

therefore, one can use the time reversible property of birth-death process. So, you can 

find out pi I’s easily using the time reversible equation itself. You do not want to use a pi 

Q is equal to zero; instead of that you can write the time reversible equation since it is 

satisfied by all the states. Now you can use the summation of pi i is equal to 1 i starting 

from 1 to n; therefore, you will get pi naught, and here the birth-death process with the 

finite state space. 

Therefore, the pi naught will be 1 divided by the denominator series that is a finite series 

finite terms in it. Therefore it always converges immaterial of the value of lambda and 

mu; therefore, you will get pi naught without any restriction over lambda and mu. So, 

once you get the pi naught you can get pi i’s in terms of pi naught. Therefore, that is 1 



minus rho divided by 1 minus rho power n plus 1 times rho power i where rho is lambda 

by mu. So, this is the birth; the underline stochastic process is the birth-death process 

with the birth rates lambda and death rates mu. So, you can use all the concepts of the 

birth-death process and you can analyze the system in an easy way. So, this is a steady-

state probability. 
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Once you know the steady-state probability you can get the other measures also. Here the 

other important thing is called the effective arrival rate; that means the system the 

queuing system is a finite capacity.  
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So, maximum N customers can wait in this system and the service rate is mu, the arrival 

rate is lambda from the infinite population. So, whenever the system size is full the 

customer is rejected; therefore, there is a rejection. After the service is completed the 

system leaves the system. So, the effective arrival rate is nothing but what is the rate in 

which the customers are entering into the system. So, there is a partition here. So, the 

effective arrival rate is lambda H. That rate will be, what is the probability that the 

system is not full multiplied by the arrival rate lambda that is going to be the lambda 

effective. Whenever the system is not full that proportion of the time or the probability is 

1 minus pi N where pi N is the steady state probability just now we got it. 
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From here you can get pi suffix N; that is the probability that the system is full and 1 

minus pi N is the probability that the system is not full and multiplied by the arrival rate 

that is going to be the lambda effective. 

And you can also find out the throughput. Throughput is nothing but what is the rate in 

which the customers are served per unit of time. The service rate is mu, and this is the 

probability that the system is not empty 1 minus pi naught. Therefore 1 minus pi naught 

times mu that is the rate in which the customers are served in the M/M/1/N system. 

Whenever the system is not empty multiplied by that probability multiplied by mu that is 

going to be the throughput. By using the time-reversible equation the mu time 1 minus pi 

naught you can get in terms of lambdas equivalent also, but throughput is the service rate 

multiplied by what is the probability that the system is not empty. 

Since it is a finite capacity system one can find out the blocking probability also. 

Blocking probability is nothing but the probability that the customers are blocked. The 

customers are blocked whenever the system is full; therefore, the blocking probability 

same as the probability that the system is full that is pi N. Once you know the steady-

state probabilities you can find out the average number of customers in the system, and 

using the Little’s formula you can get expected time spent in the system by any customer 

divided by not lambda it is lambda effective because the effective arrival rate is used in 

the Little’s formula not the arrival rate. 



For M/M/1 infinity system the effective arrival rate and arrival rate are one and the same, 

because there is no blocking; therefore, the probability of 1 minus pi N that is equal to 1 

only. Therefore, the effective arrival rate and the arrival rate are same for an infinite 

capacity system, because there is no blocking. For a finite capacity system the effective 

arrival rate has to be computed. Similarly, we have to go for finding the M/M lambda 

effective for the M/M/c/K model also. So, other than the stationary distribution or 

equilibrium probabilities we are getting the other performance measures using the birth-

death process concepts. 
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Now I am moving into M/M/c/K model queuing model. So, here the change is instead of 

one server in the M/M/1 model you have more than one server’s c, and you have finite 

capacity that is capital K capacity of the system. So, the arrival follows a Poisson 

process; service is exponential. We have c identical servers, the capacity is capital K. 

And this is the scenario in which whenever the system size is less than c it will be routed 

into the idle server. If it is greater than or equal to c that means all the servers are busy; 

that means the customer has to wait. 

But if the system size is full that means c customers are under service and k minus c 

customers are waiting in the queue for the service. Then whoever comes, it will be 

rejected, forced to leave the system. Therefore, you have the waiting as well as blocking, 

because it is a finite capacity there is a blocking. And since you have always we choose 



the K such that it is K is always greater than or equal to c. If K is equal to c then it is a 

loss system. If the K is greater than c then K minus c customers maximum can wait in 

the system in the queue. 
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Therefore, the underlining stochastic process, here the stochastic process is again number 

of customers in the system at any time t. Therefore, this stochastic process is also going 

to be a continuous time Markov chain. Because of this assumptions inter arrivals are 

exponential distributions are with each service by each server is exponentially distributed 

and all are independent and so on. So, with these assumptions this stochastic process is a 

continuous time Markov chain, and at any time only one forward or only one backward 

the system can move. 

Therefore, it is going to be a birth-death process also, and the birth rates are lambda, 

because it is an infinite source population. So, all the lambda N’s are going to be lambda 

whereas the death rates are state-dependent; that is going to be n times mu lies between 1 

to c, from c to k onwards it is going to be c mu. So, I have not drawn the state transition 

diagram for M/M/c/K, but you can visualize the way we have M/M/1/n and M/M/c 

model with the combination of that; that is going to be the state transition diagram. 

Since it is a finite capacity model it is easy to get the steady state and equilibrium the 

solution. So, first you solve pi Q is equal to zero; that means you write pi n’s in terms of 

pi naught, and use the normalizing constant summation of pi i is equal to 1, using that 



you will get pi naught. So, I have not written here. So, use the normalizing constant the 

summation of pi i equal to 1 and get the pi naught, then substitute pi naught; therefore, 

you will get pi n in terms of pi n completely. 
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After that you can get all the other average measures the way I have explained the 

M/M/1/N and the M/M/c infinity; the combination of that you can get the average 

number of customers in the system, average number of customer in the queue that is n 

minus c times pi n; the summation goes from c to k, and the average time spent in the 

system. Since, it is a finite capacity you have to find out the lambda effective, effective 

arrival rate that is 1 minus its capacity is capital K; therefore, 1 minus pi k and that is the 

probability that the system is not full. So, the effective arrival rate is lambda times 1 

minus pi k; substitute here and get the average time spent in the system. And similarly, 

you can find out the average time spent in the queue also using the Little’s formula.  
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Now I am moving into the fourth simple Markovian queuing model. First I started with 

the M/M/c infinity, M/M/1/N, then I did M/M/c/K; now I am going for capital K is equal 

to c that is loss system. It is not a queuing system, because we have a c servers, and the 

capacity of the system is also c. Example is you can think of a parking lot which has 

some c parking lots and the cars coming in to the system; that is if you make the 

assumption is inter arrival time is exponentially distributed and the car spending time in 

each parking lot that is exponentially distributed, then the parking lot problem can be 

visualized as the M/M/c loss system. 

So, here we have a c identical servers and no waiting room. So, since it is a c capacity 

and the c waiting room you can think of a self service with the capacity c that also you 

can visualize. So, here the inter arrival times are exponentially distributed and the service 

by each server that is exponentially distributed with the parameter mu. Therefore, the 

system goes from 2 to 1, 1 to 0 and so on it is going to be how many customers in the 

system and completing their service; therefore, the time is exponentially distributed with 

the sum of those parameters accordingly. 

Therefore, it is going to be 1 mu, 2 mu till c mu. Since, it is a finite capacity and so on it 

is an irreducible model positive recurrent; therefore, this steady-state probability exist, 

limiting probabilities also exist, and that is same as the equilibrium probabilities also. 



Therefore, by using p q is equal to o and the summation of p i is equal to 1 you can get 

the steady-state or equilibrium probabilities that is p n’s.  

The p suffix c that is nothing but the probability that the system is full and that is same 

known as the Erlang B formula. So, this is also useful to design the system for a given or 

what is the optimal c such a way that you can minimize the probability that the system is 

full. For that you need this formula; therefore, to do the optimization problem over the c. 

And here we denote a p suffix c that is the Erlang B formula, whereas, Erlang C formula 

comes from the M/M/c/K model; for the loss system you will get the Erlang B formula  
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The fifth model that is the M/M/infinity; it is not a queuing model, because the servers 

are infinite, unlimited servers in the system. Therefore, the customer whoever enter he 

will get immediately the service. The service will be started immediately, whereas, the 

service time is exponentially distributed with the parameter mu by the each server. All 

the servers are identical, the number of server are infinite here. 

Therefore you will have the underling stochastic process for the system size that is the 

birth-death process with the birth rates are lambda, because the population is from the 

infinite source. The death rates are 1 mu, 2 mu and so on, because the number of servers 

are infinite. So, the model which I have discussed in today’s lecture all the five models 

are the underlining stochastic process is a birth-death process; this is the simplest 

Markovian queuing models. 
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You can get the steady-state distribution; use the same theory of birth-death process, and 

if you observe this steady-state probabilities is of the same Poisson. It is of the form that 

is the probability mass function of the Poisson distribution. Therefore, you can conclude 

in a steady-state the number of customers in the system that is Poisson distributed with 

the parameter lambda by mu, because the probability mass function for the pi n is the 

same as the probability mass function of exponential distributed random variable with 

the parameter lambda by mu. 
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Now I am explaining the transient solution of a finite birth-death process. So, using these 

one can find out the transient solution of the birth-death process which I have discussed 

in today’s class M/M/1/n, M/M/c/k and M/M/c/c also. So, the logic is same; that means 

you have a birth-death process with the finite state space. Therefore, the Q matrix is 

going to be a degree, whatever be the number of states in the state space, and it is going 

to be a dry diagonal matrix. And you know the lambda n’s and mu birth rates as well as 

the death rates, and the birth rates and death rates are going to be different for these three 

models. 

There are many literatures over the transient solution of a finite birth-death process 

started with a Murphy and O’Donohoe. He uses the polynomial method and in 1978 

Rosenlund also found the transient solution for a finite BDP using again the different 

polynomial methods. And Chiang in 1980 he made a matrix method to get this transient 

solution then later Van Doorn gave the solution using a spectral representation method. 

And Nikiforov et al, 1991, he also gave the transient solution using the orthogonal 

polynomial, and later Kijima also gave the solution using Eigen value methods. So, these 

are all the literatures for getting the transient solution of a finite birth-death process. 
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 And here I am going to explain how to get the transient behavior of M/M/1/N queue in a 

very simplest form even though there are this many literature and many more literatures 

for the finite birth-death process. But here I am explaining the overview of how to get the 



transient behavior of M/M/1/N queue, and this is by O P Sharma and U C Gupta it 

appears in the stochastic processes and their applications Vol. 13 1982. So, what this 

method work you start with the forward Kolmogorov equation that is pi t pi dash t and 

that is started with. 
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Pi dash of t that is equal to pi of t into q matrix where pi is the matrix, and pi dash is with 

the derivatives and q is the infinite decimal matrix. Take a forward Kolmogorov equation 

then use the Laplace transform and so on for each pi n of t you take, sorry here the pi 

dash of t is the vector it is a distribution of a x of t. Therefore, this is a vector, and this is 

the vector, and q is the matrix not the matrix which I said wrongly. So, this is a vector, 

and this is a vector, and q is the matrix. 

So, take a Laplace transform for each probability where the pi n of t that is nothing but so 

the pi of t is the vector that started with pi naught of zero t pi 1 of t and so on pi n of t 

where pi n of t is nothing but what is the probability that, the same notation I started 

when I discussed the continuous time Markov chain, what is the probability that n 

customers in the system at time t. These are unconditional probability distribution. So, pi 

n of t is the probability that the n customers in the system are time t and using pi n of t 

you get the vector, and you make a forward Kolmogorov equation pi dash of t is equal to 

pi of t times q. 
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And take a Laplace transform for each pi n of t that exist, because this is the probability 

and the conditions for the Laplace transform of these functions satisfies, you can cross 

check; therefore, you are taking a Laplace transform and this is going to be a function of 

theta. Before taking a Laplace transform you need an initial condition also. So, at time 

zero you assume that there are no customer in the system, at time zero no customer in the 

system; that means x of 0 is equal to 0. Therefore, that probability is going to be 1, and 

all other probabilities are going to be zero; that is the initial probability vector. So, use 

this initial probability vector and apply it over the forward Kolmogorov equation, taking 

a Laplace transform you will get the system of algebraic equation. 

Since you are using a pi naught of 0 is equal to 1 you will get the first equation with the 

term 1 and all other terms are going to be 0, and you know the Laplace transform of the 

derivative of the function. So, you substitute you take a Laplace transform over the 

forward Kolmogorov equation with this initial condition as well as pi n’s of 0 is equal to 

0 for n naught equal to 0. So, you will have an algebraic equation that is n plus 1 

algebraic equation is a function of theta. 

You have to solve this algebraic equation system of algebraic equations in terms of theta. 

Once you are able to solve this and take an inverse Laplace transform and that is going to 

be the system size at any time t. You can start saying that this is going to be of the 

solution of A times alpha n and B times beta power n where alpha and beta are given in 



this form where alpha is equal to this plus something and the beta is equal to minus 

something minus square root of this expression. So you will have alpha as well as beta. 

Now what you want to find out? If you find out the constant A and B you can get the 

Laplace transform of pi n of t then you take an inverse Laplace transform and you get the 

pi n of t. 
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So, for that you need the determinant of matrix of this form, and here this is nothing but 

all these values are death rates, and these are all the birth rates, and this is corresponding 

to the M/M/1/N model, and the same logic goes for the transient solution of the M/M/c/K 

as well as M/M/c/c. So, instead of this lambdas and mu’s you will have a corresponding 

birth rates and the death rates, but ultimately you will have a n plus 1 matrix determinant 

as a function of theta. And since these three models are going to be a irreducible positive 

recurrent the stationery probability and the limiting probabilities exist; therefore, this 

determinant is going to be always of the form theta times some other function as a degree 

as a polynomial of degree n in a function of theta.  

So, this theta is corresponding to the stationary probabilities or the limiting probabilities. 

Therefore, always you can get the n plus 1 th degree matrix 1 th order matrix determinant 

that is theta times the polynomial of degree n as a function of theta. For the M/M/1/N 

model the birth rates are lambda and the death rates are mu, and you can get this 

polynomial also in the form of product.  



The product of theta plus lambda plus mu times alpha of N comma k square root of 

lambda mu where alpha of N comma k is nothing but the k roots of a n th degree 

Chebyshev’s polynomial of second kind. There is the relation between the birth-death 

processes with the orthogonal polynomial. For instance the M/M/1/N model the finite 

capacity M/M/1/N model the corresponding orthogonal polynomial for this birth-death 

process is the Chebyshev’s polynomial of the second kind. 

Similarly you can say the orthogonal polynomial corresponding to the M/M/c/c model 

that is the Charlier polynomial. Like that we can discuss the corresponding orthogonal 

polynomial for the finite capacity birth-death processes. So, here for the M/M/1/N model 

this is related to the Chebyshev’s polynomial of second kind that is U n of x. So, once 

you are able to get the Chebyshev’s polynomial roots and that root is going to play a role 

in the product form and that is going to be polynomial. Note that this polynomial has a 

distinct real factor. 
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Therefore, you can use the partial fraction, then you take an inverse Laplace transform 

and finally you can get the pi n of t. I am skipping all the simplification part and the main 

logic is this n plus 1 th order matrix determinant and that determinant has the factors and 

those factors are related to the Chebyshev’s polynomial roots. So, once you use all those 

logics and use the partial fraction then finally you take an inverse Laplace transform. 



For lambda is not is equal to mu you will get a steady-state or stationary probabilities 

plus this expression, and this is the function of t e power minus lambda plus mu times t 

plus 2 times square root of lambda mu times t cos of r pi by n plus 1 and denominator 

this expression multiplied by this, and here this result is related to the initial condition 0; 

that means a time 0 the system is empty. If the system is not empty then you will have 

one more expression here sin of this minus another term. 

So, that is you will have a getting bigger expression for system size is not empty, and this 

theta times this that will give the corresponding partial fraction and so on, inverse 

Laplace it will give the terms which is independent of t and that is the related to the 

steady-state probabilities, because if you put t tends to infinity if the quantities are 

greater than 0, so as a t tends to infinity the whole terms will tend to zero. Therefore, as t 

tends to infinity you will have pi n of t is equal to this expression, and this is valid for rho 

is less than 1; with that condition rho is less than 1 those terms will tends to 0. 

And you will have only this term and that is going to be the steady-state or limiting 

probabilities for M/M/1/N model. If you make also n tends to infinity along with the t 

tends to the infinity you will have pi n’s that is the steady-state probability for the M/M/1 

infinity model. So, even though I have explained the M/M/1/N transient solution in a 

brief way but the same logic goes for the M/M/c/c model also. The only difference is this 

determinant has the lambdas and instead of mu’s you will have mu 2, mu 3, mu and so 

on.  

And instead of the Chebyshev’s polynomial you will land up with the Charlier 

polynomial, but there is a difference between this M/M/1/N model and the M/M/c/c 

model transient solution. Since the Chebyshev’s polynomial has a closed form roots you 

can find out the factors. So, here these are all the factors, and you know the factors as 

well as you can get the closed form expression for the M/M/1/N transient solution 

whereas the Charlier polynomial does not have a closed form roots. Therefore you will 

land up with the numerical result for the transient solution for M/M/c/c model.  

  



(Refer Slide Time: 53:31) 

  

 

Location of a continuous time Markov chain that is a finite source Markovian queuing 

models. This model is also known as a machine repairman model, and you can think of 

this PCs are nothing but the machines, and this is nothing but the repairman, and here the 

scenario is we have KPCs and each PC can give a print job and the inter arrival of print 

jobs that is exponentially distributed by the each PC. Therefore the print jobs that follow 

a arrival process that is the Poisson process with the parameter lambda from each PC. 

And once the print jobs comes into the printer it will wait for the print and the time taken 

for the each print that is also exponentially distributed with the parameter mu, and here 

there is an another assumption before the first print is over by the same PC it cannot give 

another print command. 

Therefore, after the print is over by any one particular print job of any PC then these 

things will go back to the same thing. Then with the inter arrival of print jobs generated 

that is exponentially distributed then the print job can come into the printer. So, with 

these assumptions you can think of the stochastic process; that means number of print 

jobs at any time t in the printer that is going to form a stochastic process, and with the 

assumption of inter arrival of print jobs that is exponential and the actual printing job that 

is exponentially distributed and so on. 
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Therefore this is going to be a birth-death process with the birth rates or k times lambda 

and k minus 1 times lambda and so on, whereas, the death rates that is mu because we 

only one repair. So, this is nothing but system size number of jobs in the print job printer, 

so therefore, that varies from 0 to capital k because we are making the assumption more 

than one print job cannot be given by the same PC before the print is over, and from 0 to 

1 the arrival rate will be any one of the KPCs; therefore, the arrival rate is k times 

lambda and already one print job is there in the system printer. Therefore, out of k minus 

1 PC is one print job can come; therefore, the inter arrival time that is exponentially 

distributed with the parameter k minus 1 times and lambda and so on. So, this is the way 

you can visualize the birth rates whereas the death rates are mu. 

Once you know the birth rates and the death rates you can apply the birth-death process 

concept to get the steady-state probabilities. So, here we are getting the pi i’s in terms of 

pi naught and using the summation of pi I is equal to 1 you are getting the pi naught also. 

And once you know the steady-state probability you can get all other measures. So, the 

difference is in this model it is finite source; therefore, the birth rates are the function of 

it is a state-dependent birth rates whereas the death rates are mu’s only. 
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Simulation of a queuing model I will do it in the next lecture. 
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The summary of today’s lecture I have discussed the simple Markovian queuing models 

other than M/M/1/infinity that I have discussed in the previous lecture and stationary 

distribution and all the other performance measures using the birth-death process we 

have discussed for this queuing models, and finally I discussed the finite source 

Markovian queuing model also. 
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These are all the reference books.  

Thanks. 


