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This is a module 5 continuous time Markov chain lecture 3 Poisson process. In the first 

two lectures, we have discussed the continuous time Markov chain definition, 

Kolmogorov differential equation, chapman Kolmogorov equations and infinite decimal 

generator matrix. Then we have discussed some properties also, in the lecture 2 we have 

discussed the birth death process and their properties and also we have discussed the 

special cases of birth death process, pure birth process and death process. 

In this lecture, we are going to discuss Poisson process and its application. So, let me 

start with the Poisson process definition, then I give some properties in the Poisson 

process and I also present some examples.  

Poisson process is a very important stochastic process; and never something happens in 

some random way occurrence of some event, and if it satisfies a few properties, then we 

can module using Poisson process. And Poisson process has some important properties 

whereas the other stochastic processes would not be satisfied with those properties 

therefore the Poisson process is a very important stochastic process for the many 

modeling’s in a applications like, telecommunication or wireless networks or any 

computer systems or anything any dynamical system, in which the arrival comes in some 

pattern and satisfies few properties. 
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So, before moving into the actual definition of Poisson process, I am going to give one 

simple example; and through this example I am going to relate the Poisson process 

definition, then later I am going to solve the same example also. Say example number 2 

example 1, I have something else consider a car insurance claims reported to insurer; it 

need not be car insurance, you can think of any motor car motor insurance or any 

particular type of vehicle or whatever it is. 

Assume that the average rate of occurrence of claims 10 per day, it is a average rate per 

day therefore, it is a rate per day; the average rate is a 10 also assume that, this rate is a 

constant throughout the year and at the different times of a day. 

So, even though these quantities; average quantity there is a possibility, some day there 

is no claim reported at all or there are some day more than some 30 40 claims reported 

and all the possibilities are there. But, we make the assumption the average rate is a 

constant throughout the year at the different times of a day, also further assume, that in a 

sufficiently short time interval there can be at most one claim. 

Suppose you think of very small interval of like, 1 minute or 5 minutes or whatever very 

small quantity comparing to the because here I have given the average rate is a 10 per 

day. Therefore, whatever the time you think of very negligible in that the probability of 

are, it is sufficiently small interval of time, there is a possibility of only maximum one 

claim can be reported. 



The question is, what is the probability that there are less than 2 claims reported on a 

given thing? What is the probability that less than two claims reported means? What is 

the probability that in a given day either no claim or one claim also. We are asking the 

second question, what is the probability that time until the next reported claims less than 

2 hours? Suppose some time one claim is reported, what is the probability that the next 

time is going to be reported before 2 hours?  

We started with these problem in the car insurance claims reported therefore, the claims 

is nothing but, some event and these events are occurring over the time, suppose you 

make the assumption of sufficiently smaller interval of time, at most one claim can 

happened and the average rate of occurrence of claim is a constant throughout the time. 

So, with this assumption one we can think of sort of arrival process, pure birth process 

satisfying some condition and that may need into poison process, so this same example 

we are going to consider it to again also.  
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Now I am going for derivation of a Poisson process, how one can drive the Poisson 

process? Poisson process is a stochastic process with some conditions; so how one can 

derived the Poisson process for that let me start with the random variable n of t, that 

denotes the number of customers arriving during the interval 0 to time t. 



That means, how many arrivals takes place in the interval 0 to t? that means, for fixed t n 

of t is a random variable over the time, this n of t collection that is the stochastic process  

making. 

Some 4 assumption with these assumptions, I am going to be conclude the n of t is going 

to be a stochastic process. The first assumption not x of 0 n of 0 is equal to 0, at time 0 

the number of customers is 0, n of 0 is equal to 0 is wrong n of 0. second one, the 

probability of arrival in a interval x to x plus delta t; that is the lambda times delta t, 

where lambda is strictly greater than 0. 

That means, probability that a only one arrival is going to takes place in the interval of 

delta t; that probability is lambda time delta t, for as very very small interval delta t its 

independent of x, that means it is a increments are stationary; that property I am going to 

introducing in these assumption. 

The probability of more than one arrival, in the interval x to x plus delta t is negligible, 

that means at most maximum one arrival can occur in a very small interval of time, that 

is the assumption; that I am specifying in third one. 

The fourth assumption, arrivals in non over lapping intervals are independent, that means 

if the arrivals occurs in a some interval, and another some non overlapping interval then 

those arrivals are going to be form a independent. 

That means there is no dependency, over the non over lapping intervals arrivals going to 

occur or not; so with these four assumptions n of 0 is equal to 0, and probability of one 

arrival is lambda times delta t in a small interval more than one arrival occurrence in a 

interval delta t. Where delta t is a very small; that is that probability is negligible and non 

over lapping intervals arrival are independent.  
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So with these derivation, I am going to find out the distribution of n of t; To find the 

distribution of n of t, first I am doing I am partitioning the interval 0 to t into n, equal 

parts with the length t divided by n, the way I use the the way I partitioned the interval 0 

to t into n pieces. Such that, p by n is going to be a very small interval, so that means I 

have to partition that interval 0 to t in such a way, that the t by n is going to be as small 

as therefore, I can use those assumption of a probability of occurring one arrival in that 

interval of length t by n, that probability is lambda times t by n. 

And the probability of not occurring a event, in that interval t by n is 1 minus lambda 

time t by n, so I can use those concepts for that, I have to partitioned interval 0 to t into n 

parts with the sufficient larger n therefore, t by n is going to be smaller. Now since, I 

partitioned this interval to n pieces, n parts. I can think of yet each parts I can think of a 

binomial or Bernoulli distribution at each pieces therefore, all the non-overlapping 

intervals occurrence are independent. therefore, I can think of it is accumulation of a n 

independent Bernoulli trials. 

Since, it is an n independent Bernoulli trials for each intervals t by n of n th t by n 

therefore, the total number of event occur in the interval 0 to t, by portioning into n equal 

parts, this is a sort of what is the probability that k events occurs in the interval 0 to in the 

time duration 0 to t as a n portion? 



So, out of n equal parts what is the probability that k events occur in the interval 0 to t? 

that is nothing but, since it is each interval is going to form a Bernoulli distribution with 

the probability p is lambda times t by n therefore, the total number is going to be 

binomial distribution with the parameters n and p where p is a lambda times (()) n 

therefore, this is the probability mass function of k, event occurs out of n equal parts 

therefore, n c k lambda times t by n power k 1 minus lambda times t by n power n minus 

k. 

Now, the running index for k goes for 0 to n; that means there is possibilities no event 

takes place in the interval 0 to t, or maximum of n interval, n event takes place in all n 

intervals. 

So, this is for a sufficiently large n such that, the t by n is smaller, we take n tends to 

infinity to understand the limiting behavior of this scenario, as the partition becomes 

finer. now I can go for n tends to infinity what will happen has n tends to infinity. 

If you do the simplification, here as n tends to infinity that simplification, I am not doing 

in this presentation, has a limits n tends to infinity, the whole thing will land up, the e 

power minus lambda t lambda t power k by k factorial. 

Now, the k running indexes is 0, 1, 2 and so on. This you can use the concept the 

binomial distribution, as n tends to infinity and p tends to 0. you are n into p becomes 

lambda, so that will give the Poisson distribution. The limiting case of a binomial 

distribution is the Poisson distribution. 

So, using that logic this binomial distribution mass has n tends to infinity, this becomes a 

Poisson distribution mass function. So, this is nothing but, the right hand side is the 

probability mass function for a Poisson distribution with the parameter lambda times t, 

and this is the random variable for n of t for fixed t. 



 (Refer Slide Time: 13:55) 

. 

Therefore for fixed t, n of t is a Poisson distributed random variable, with the parameter 

lambda times t. where lambda, is greater than 0 therefore, we can conclude the stochastic 

processes related to the n of t for fixed t, n of t is Poisson distribution therefore, the 

stochastic process n of t over the t greater then or equal to 0, that is nothing but, Poisson 

process. 

So from the Poisson distribution, we are getting Poisson process because each random 

variable is a Poisson distributed with the parameter lambda times t therefore, the 

collection of random variable is a Poisson process with the parameter lambda t. Since, it 

is a Poisson distributed random variable for fixed t, you can get the mean and variance 

and all other moments also, by using the probability mass function of n of t. 
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Formally, we define Poisson process has follows a stochastic process n of t, t greater than 

or equal to 0; is said to be a Poisson process with the intensity or rate lambda, greater 

than or 0 with the following conditions are satisfied; first condition, it start from 0 that is 

n of 0 is equal to 0. 

Second condition, the increments are stationary and independent stationarity means, that 

for time points s and t s greater than 0, the probability distribution of any increment n of 

s minus n of t depends only on the length s minus t of the time interval, and that the 

increments on equally long time intervals are identically distributed. 

Independent increments means, that for any non overlapping intervals t comma s and u 

comma v, the random variables n of s minus n of t and n of v minus n of u are 

independent. For t greater than 0 n of t has the Poisson distributed random variable with 

the parameter lambda t. 

And the difference of the random variables defined, over non overlapping intervals are 

independent. lambda t is the cumulative rate t time t, the exercise are independent and 

identically distributed random variables, with sum distribution function g independent of 

the Poisson process n of t, t greater than or equal to 0. 



It is Markov in nature, because the two q is act independently, and are themselves m m 

one queuing system, which satisfies the Markov property, assuming that each queue 

behaves as the m m one queue that is all.  

(( )) I do not know, I change the word Poisson distribution into Poisson distributed 

random variable, you have to say this sentence, because queue i j were obtained by 

differentiating the queue i j. we need said that but, (( )) it was not with the full stop it is  

continuation [FL]. 

Yeah, the way I was and similarly, that n of t I can tell again that Poisson [conversation 

between student and professor] the details of the proof can be found in the references 

books, because k i j‘s are obtained by differentiating the p i j‘s for every t greater than 0 

n of t has Poisson distribution, with the parameter lambda t like that you can go for many 

more increments also. 

 for illustration, I have made it with the two increments, that means the occurrence of 

arrival during, this non overlapping intervals are independent and stationary means, it is 

a time in the variant only the length maters not the actual time. 

Third one, for every t n of t as a Poisson distribution with parameter lambda t, so the 

Poisson logic is coming into the fourth condition only. the first condition is start at 0 

implements are stationary and increments are independent. the third condition for fixed t 

n of t is the Poisson distribution random variable with the parameter lambda t therefore, 

this stochastic process is called a Poisson process. 

Now, we can relate the way you have done the derivation, we have taken care this three 

assumptions starting at a time 0 increments are stationary, that we have taken and 

increments are independent; that is non overlapping intervals are independent, then when 

we are derived. 

We are getting the distribution of the random variable n of t is the Poisson distributed 

random variable therefore; this is the Poisson process. the another way of defining the 

Poisson process, we can start with the birth-death process. 
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You know that, birth-death process is a special case of a continuous time Markov chain 

also it is a special case of a sorry it is special case of Markov process also, you can think 

of stochastic process, then the special cases of Markov process then the special case are 

continuous time Markov chain, then you have a special case, that is the birth death 

process. 

So, you can define the Poisson process from the birth-death process, also a birth-death 

process n of t is said to be, a Poisson process with the intensity or rate lambda. if birth 

rates are constant for all i, and the death rates are 0  we start from the birth-death process, 

with all the birth rates are same; that means it is a special case of pure birth process, in 

which birth rates are constant for all the states and the death rates are 0. 
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Then also, you will get the Poisson process. Here I am giving a sample path for the 

Poisson process; so this is the created using the mat lab, write the simple code of Poisson 

process, then you develop the sample path. That means at time 0, this system at 0 at 

some time one arrival takes place therefore, the system land up one therefore, the y axis 

is nothing but, the n of t so at this time one arrival takes place therefore, the number of 

customers in the system number of arrivals till this time that is one. 

So, it is the right continuous function. the value at that point and the right limit is same as 

both are same features, different from the left limit of the arrival a poke arrival time of a 

poke. So, the system was in the state one till the next arrival takes place, so suppose the 

arrival takes place here, then the n of t values is 2 at this time point, in which the arrival a 

poke and the right limit and so on. 

So, this is the way therefore, the system at any time, it will be the same value are it will 

incremented by only 1 unit. the Poisson process sample path will be with the one units 

step in increment at any time, there is no way the two steps the system can move forward 

at even in very small interval of time. The system will move into the only one step, that 

you can visualize here therefore, you can go back to the assumption, which we have 

started with the derivation in absolute is equal to 0 in a very small interval of time at 

most one event can take place. 



And the difference of the random variables, defined over non overlapping intervals or 

independent and increments are also stationeries are those things, you cannot be visualize 

in the sample path, so this is the just one sample path over the time and n of t. 
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The second one, inter arrival times are independent as well as, we can conclude the inter 

arrival times are exponentially distributed also, the inter arrival times are independent, 

and each follow exponential distribution with the parameter lambda, what is the meaning 

of inter arrival times at time 0? This system is in the state 0. First arrival occurs, at this 

time point second arrival occurs this time point, and fourth third forth and so on. The 

inter arrival time means, what is the time taken for the first arrival? then what is the 

interval of time taken for the first arrival to the second arrival, and second to the third 

and so on. 

So, that is the inter arrival time. So, whenever you have a Poisson process that means the 

arrival of event occur over the time, that follows Poisson process then this inter arrival 

time suppose, I make it as a random variable capital T and those random variables going 

to follow exponential distribution with the same parameter lambda. And all the inter 

arrival times also independent, that means these are all identically distributed random 

variable. I can go for different random variable label, also x 1 x 2 x 3 x 4 and so on. So, 

all those random variables are iid random variables and each follows exponential 

distribution with the parameter lambda.  
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So, this can be proved easy. let we start giving the proof for the first arrival time that 

means, the first one from 0 to the first arrival like, that you can go for the other arrivals 

also using the other properties are you can use, the multi dimensional random variable 

distribution concept and use the function of random variable and you can get the 

distribution also. 

But, here I am finding the distribution for the first arrival, so let t denote the time of first 

arrival. my interest is to find out, what is the distribution of capital T? I know that, this is 

going to be a continuous random variable; because it is a time. so any time the first 

arrival can occur. So, to find since it is a continuous random variable, I can find out the 

cdf of the random variable or complements cdf. 

So, here I am finding the first complements cdf using, that I am going to be find out the 

distribution, let me start with the probability, that the first arrival is going to takes place 

after time t, what is the meaning of that? The first arrival is going to occur, after time 

small t that means till time t, there is no arrival. So, both the events are equivalent events, 

the probability of t greater than small t, that is same as the probability of n of t is equal to 

0.  

That means no event takes place till time t, because the n of t denotes the number of 

arrival of customers during the interval 0 to small t; both are closed 0 to 1 0 to t 

therefore, n of t equal to 0, that means till time t nobody turned up; that is equivalent of 



the first arrival is going to takes place after t. I do not, what is that i do not the 

distribution of the capital t? but, I know the what is the probability n of t? that is equal to 

0 therefore, I am writing this relation, so once I substitute the probability mass at 0 for 

the random variable n of t. 

Just now, we have proof that n of t for fixed t is a Poisson distribution random variable 

with parameter lambda times t therefore, I know what is the probability mass at 0? so 

substitute the probability mass function with the 0. I will get e power minus lambda t that 

is complement cdf of the random variable in capital T. 

Once you know the complements cdf, I can find out the cdf from the cdf, I can compare 

the cdf of some standard continuous random variable, I can conclude this is nothing but, 

exponential distribution with the parameter lambda, because this is the complement cdf 

at time t therefore, it is a lambda times t. 
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So, I conclude the distribution of capital T is exponential distribution with the parameter 

lambda, that means the first time of arrival this random variable, that is the continuous 

random variable, and the continuous random variable follows the exponential 

distribution with the parameter lambda. 

Since, I know the increments are independent increments are stationary and so on. I can 

use the similar logic for inter arrival time of the this time, also then that is also going to 



follow independent exponential distribution since increments are independent. So, this is 

the first time and this is the second time therefore, the inter arrival times also going to be 

independent; that means whenever you have a Poisson process, that means the arrival 

occurs over the time in a very small interval maximum one arrival takes place, and the 

probability of one arrival in that small interval is lambda times delta t from that you will 

get the lambda. 

So you can conclude, that is Poisson distribution Poisson process, so once the arrival 

follows is the Poisson process, the inter arrival times are exponential and independent. so 

from the poison process, one can get the inter arrivals are exponential distribution and 

independent the converse also, true that means if some arrival follows with the inter 

arrival times, exponential and exponential distribution and all the inter arrival times are 

independent. 

Then, you can conclude the arrival process is going to form a Poisson process, that 

means arrival process and Poisson process implies, the inter arrival times are 

exponentially distributed and are independent similarly, inter arrival time are 

independent as well as exponentially distributed with the parameter lambda. 
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Then, the arrival process is the Poisson process with the parameter lambda with the 

intensity or rate, now I am going for the stationary increment the distribution of n of t 

minus s depends, only the length of the interval t minus s and does not depend on the 



value of s; that means during the interval delta t the one arrival is going to be lambda 

times delta t order of delta t, that will tends to 0 as n tends to has delta t tends to 0. 

That means the stationary increments means, if you find out the rate that means you find 

out the average per unit of time, then that is going to be a constant. So, this is the 

assumption, we have taken it in the the car insurance a problem the average rate per day. 

that is going to be constant, and that is the assumption we are taking at going to be 

constant throughout the year and also the different times of day. 
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So, here also we will get, whenever you have Poisson process, then the average rate is 

going to be a constant; because of the stationary increment, the next property suppose 

you have Poisson process of a one arrival and you have Poisson process of the other 

arrival. 

That means, the one type of arrival is the Poisson process with the parameter lambda one 

and another type of arrival two, that is also Poisson process with the parameter lambda 2, 

as long as both are independent, the arrivals are independent then the together super 

position. That, is going to be a again Poisson process with the parameters lam parameter 

lambda 1 plus lambda 2. you can add the parameter, that means for fixed t that is going 

to be a Poisson distributed random variable with the parameter lambda 1 plus lambda 2 

times t. 



Whenever, you have two independent or more than one independent Poisson process 

arrival, then the merging are the superposition, will be again Poisson processes as long 

as, they are mutually independent with the parameter is nothing but, the some of those 

parameters, that is you can is you can combine. 
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You can combine many Poisson process is stream into one stream, and that is going to be 

a Poisson stream with the parameter sum of a parameters lambda 1 to lambda n; so this is 

possible, this is used in many telecommunication of vocation. That means suppose, you 

have a Poisson arrival of a packet from different streams, and all the streams are 

mutually independent, that arrival are independent, then the total number of packets 

arriving into the particular switch or router. 

Whatever it is then, the multiplexed one that is going be always be a Poisson process, 

that arrival follows the Poisson process, the parameter are some of parameter is nothing 

but, the some of these parameters as long as they are Poisson as well as the independent. 
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The next property decomposition, suppose if you have a one Poisson stream, you can 

decompose into many Poisson streams with the some proportion, so that proportion are 

the p 1 p 2 and p n’s. So, one Poisson stream can be split into n Poisson streams with the 

parameter lambda times p, 1 lambda times p 2 per each p i’s are greater than 0, the 

summation of p i’s are as to be 1, that means these are all are properties with this 

probabilities, you can split one Poisson stream into many Poisson stream. 

So, here I made a n Poisson streams that means, the same arrival is with some probability 

p 1 it land up here, with some probability p 1 this put up here with some probability, p n 

it is put up here, so this split of one Poisson stream into n Poisson streams is allowed that 

means the same example. 
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If you have a one router from the router, if the arrivals is splitted into many streams, with 

probability p 1 it goes to the first stream, with the probability p 2 is goes to the second 

stream and with the probability p n is goes to the last stream, then each one is going to be 

a Poisson process, each one is going to be a Poisson process with the parameter lambda 

times p 1 and lambda times p 2 and so on lambda times p n. 

So, the split is possible as well as, the superposition is also possible from the Poisson 

process. So, this also has the many more applications in the telecommunication networks 

one packet one type of packet arrival can be splitted into n proportion, so p 1 p 2 p n’s 

and each one is going to be a Poisson process. 
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Now, I am going to be give the first example, to illustrate the Poisson process consider; 

the situation of waiting for a bus, in a bus stand in a bus stand assume, that the bus 

arrivals in minutes, follow a Poisson process with the parameter five with the rate, the 

parameter here that is nothing but, the intensity or rate suppose you come to the bus 

stand at some time, what is the average waiting time to get the bus? 

When you land up with the bus stand, there is the possibilities the bus would have come 

before sometime, the time in which the bus the next bus is about to come, you are going 

to take that bus and till that time you are going to wait in the bus stand, that is the waiting 

time.  

So, the waiting time is a random variable; that is a continuous random variable. the 

question is what is the average waiting time? one can find out the distribution of the 

waiting time also, here the question is what is the average waiting time? so the what I 

can do I can use the Poisson concept here. 
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The arrival follows, the arrival of a bus follows a Poisson process, suppose at some time 

move to the bus stand, and the suppose the bus is going to come, at this time your 

waiting time is this much, so suppose you make a w is going to be your waiting time w is 

going to be your waiting time. 

The question is, what is the average waiting time? just now, I have explain the Poisson 

process as the property, the inter arrival time are exponential distribution and the inter 

arrival times are exponential distribution, and all the times are all the inter arrival times 

are independent all therefore, this x 1 and this is x 2 and this is x 3. 

So, x 1 comma x 2 , x 3 like that so many all the inter arrival times, that is going to 

follow exponential distribution with the parameter lambda, since the waiting time is 

going to be the remaining time of arrival of the third bus. So, the w waiting for the time 

is same as the remaining or residual time of the third bus to coming into the bus stand, so 

x 3 is a exponential distribution with the parameter lambda the residual life time of x 3. 

Suppose, I make it us the notation x 3 bar, the residual life time residual life time of 

arrival not life time residual arrival time of a the third bus coming to the bus stand, that is 

also going to be exponential distribution, this is because of the memory less property. 

there is residual time also, whenever some time is exponentially distributed some random 

variable time is exponentially distributed, then the residual time is also going to be 

exponentially distributed using the memory less property. 



Therefore, residual arrival time of bus to come to the bus stand, that is also exponentially 

distribution with the parameter same lambda. so this is same as the w the waiting time w 

is same as the residual time therefore, the w is also going to be exponentially distributed 

with the parameter lambda. That means, the waiting time for the bus to come to the bus 

stand, to catch the to cache, so the w is exponentially distributed therefore, the question 

is what is the average waiting time? So average waiting time is nothing but, one divided 

by the parameter. 

One divided by the parameter so, here it is says the Poisson process with the intensity 5, 

that rate is lambda; that is the mean inter arrival time between the buses is 5 minutes, that 

means in the mean inter arrival time between the buses is 5 minutes is nothing but, its 

exponentially distributed with the parameter, that is the average 5 minutes therefore, that 

is the same thing therefore, that is equal to 5 minutes . 

Because, the way I have given the clue the mean inter interval between the buses is 5 

minutes, that means the ra the average of x i’s that is equal to 5 minutes, so that is the 

same as your waiting time, because it is exponentially distribution therefore, the residual 

is also exponential distribution. Therefore, you can use the same value therefore, the 

average is going to be 5 minutes, so using Poisson process one can find out the different 

results related to the number of arrivals. next I am going to give some more process 

related to the Poisson process. 
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He first one is the non homogenous Poisson process, let n t denote the number of 

customers arriving in the interval 0 to t, the arrival process as the Poisson distribution 

but, here the change instead of, the mean arrival rate is a constant mean arrival rate; is a 

constant lambda but, here it is a function of t lambda t ;is the cumulative rate at time t. 

That is the change from the Poisson process, then this stochastic process is called a non 

homogenous Poisson process, instead of mean arrival rate is a constant, here the lambda t 

is a function of t therefore, this stochastic process is called a non homogenous Poisson 

process.  
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Second one, compound Poisson process using Poisson process; one can develop a little 

complicated stochastic process related to the arrival that is called a compound Poisson 

process. Consider a Poisson process n of t, then you define a random variable x i’s 

denote the number of customers arriving at the i th time point of arrival. 

X 1 denotes the how many arrivals takes place at the time of first arrival? first arrival 

time point and x 2 will be, what is the second time of arrival? how many arrivals takes 

place? therefore, I am making a new random variable x of t; that involves t, that denotes 

the total number of customers arriving during the interval 0 to t. 

That means, it is going to be a how many arrival takes place in the first time point x 1? 

how many arrival takes place at the second time of arrival that is x 2? and so on. plus x 



of t x of x of n t here n t is a random variable, and how many arrival takes place that is a 

x i’s? 

All together, that is going to be the total number of arrivals the x i’s are independent and 

identically distributed random variables, with some distribution function g independent 

of the Poisson process n t. So this is nothing but, random some because these are all the 

random variable and how many random variables you are going to add? that dependence 

on the value of n of t over the t, this is the random sum of a x i’s with n of t obviously 

these two are independent x i’s are independent of n of t. 

And since, it is a number of arriva customers arrival during, the in the i th time point 

therefore, x i’s are discrete random variable, x i’s are discrete random variable and n of t 

is also discrete Poisson process. Therefore, x of t is going to be a discrete state 

continuous time stochastic process and we are using the Poisson process, to get these 

stochastic process therefore, it is called a compound Poisson process. One can reduce 

Poisson process from the compound Poisson process by substituting, each x i’s takes the 

value only one unit. 

That means, the number of customers arriving at the i th time point is going to be only 1, 

that means if I make a p probability of x i takes, the value only 1; that probabilities is 1 

for all i, then I will have a only 1 value possible till n of t, then this is going to be a 

Poisson process. 
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Suppose, the probability of x i’s the suppose x i’s are going to be a discrete random 

variable with the possible values 0 1 2 and so on. Then the x of t is going to be a Poisson 

process. I can make a simple sample path for the compound Poisson process, this is over 

the time and this is over the n x of t. Suppose, these are all time points in which arrival 

time point, so this is the first arrival time point and this is the second arrival time point 

and this is the third arrival time point; it can be anywhere in the cont in the continuous 

times therefore, this called discrete state continuous time stochastic process . 

So here, I am relating with the random variable x 1, this x 2 random variable, this is x 3 

random variable, so till the first arrival till the first time of arrival the number of 

customers in the system is 0 at the first time of arrival the x 1. Suppose you think, you 

make the assumption x 1 takes the value 3, x 1 takes the value 3 therefore, this will be 

incremented by 3 till the second arrival, at the time of second arrival suppose, you 

assume that this takes the value 2 with some probability probability of x 2 takes, the 

value 2 is greater than 0, so you have assume the value 2 it can take any other value also 

So, it is incremented by 2 till it takes the third arrival the value is a so this is 0, this is 3 

then 3 plus 2 5 at this time, whatever be the number of arrival accordingly this can takes 

some value. So, the difference between the compound Poisson process and the Poisson 

process, the Poisson process increment will be only one unit increment, over the time 

whenever the time in which the arrival occurs arrival time a pokes. 

Whereas, here wherever the time of arrival time a pokes, the number of customers 

entered that need not to be 1, it can be more than or equal to 1, so that is the way the job 

goes therefore, this is called a compound Poisson process. So we have seen two 

variations of a Poisson process; one is a non homogenous Poisson process and other one 

is compound Poisson process. So before I go to the I complete let me give the solution, 

for the first ex second example which i started. 
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That is the question, the car insurance problem we have discuss the two problem; the 

first problem is related to the bus stand bus arrival issues, and this is the car insurance 

problem. So, in this problem we have not assume the Poisson process, but the problem is 

a related to the Poisson process, one can assume it is a form a Poisson process, because 

you see the assumption the average rate of occurrence of claims is a 10 per day, also the 

rate is constant and in a very small interval time, at most one claim can be happen the 

questions are, what is the probability that there are less then two claims reported on a 

given day? 

Since, the increments are stationary so any day you can think, of with the only the 

interval what is the probability that time until the next reported claim is less than 2 hours, 

so this is related to use the exponential distribution, because the inter arrival times are 

exponentially distribution. 
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So for the first question, you can assume that you can assume that the n of t is nothing 

but, the number of number of insurance car insurance claims reported to the insurer, that 

as the Poisson process. We can assume that n of t is the Poisson process based on the 

assumption given in the problem. 

Once you assume, that this is the Poisson process the question is what is the probability 

that there 0 to 2 days itself, because of the increments are stationary so, the question is 

nothing but, what is probability that n of 1 is less than 2 in a given day a day, so what is 

probability that n of 1 is less than 2? That is nothing but… What is probability that n of 1 

equal to 0 or n of 1 equal to 1? therefore, the probability is added so you substitute since, 

n of t is the Poisson process the probability mass function of n of t is equal to k, that is e 

power minus lambda. Here the lambda is the 10 per day 10 times t and 10 times t power 

k by k factorial. 

So this is the probability mass function, for the random variable n of t for x to t therefore, 

n of 0 n of is equal to 0, that is nothing but, e power minus 10, here the t is one day plus 

n of 1 is equal to 1, you substitute here therefore, you will get 10 times e power minus 

10, so the answer is the 11 times e power minus 10 numerically, you can get what is a 

value? 

So the probability that, there are two claims a reported on a given day is a 11 times e 

power minus 10, the second question what is the probability that time until the next 



reported claims is less then 2 hours? So, this is equivalent of the next reporting claims, is 

less than 2 hours that means the residual time of the next claim, that is going to happen 

the one claim is going to happen less than 2 hours. 

That means, you can use the inter arrival time that is the exponential distribution with the 

parameter lambda, here the lambda is 10 or 10 by 2 hours therefore, you should convert 

the values, it is a 10 divided by 24 claim can happen at any day throughout towards 24 

hours therefore, 10 per day therefore, it is 10 divided by 24 per hour, so that is the 

exponentially distributed with the parameter 10 by 24. 

Now the question is, what is the probability that time and the next report claim is less 

then 2 hours? that means what is the probability that t is the less than 2? that is nothing 

but, that is nothing but, since it is exponential distribution and you know the cdf of a the 

random variable t. So the probability of t is less than 2 is nothing but, 1 minus e power 

minus 2 so 2 times so 20 by 24, so the answer is 1 minus e power minus 20 by 24 , that is 

the probability that the next report the claim is going to be occur before 2 hours. 
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So, with this I have completed two examples also. In this lecture we have discussed 

Poisson process and we have illustrated two examples; for the Poisson process also, 

some important properties also discussed in this. The next class, I am going to discuss 

the applications of ctmc in queuing models. these are all the reference books. Thanks. 


