
Stochastic Processes 
Prof. Dr. S. Dharmaraja 

Department of Mathematics 
Indian Institute of Technology, Delhi 

 
Module - 5 

Continuous-time Markov Chain 
Lecture - 2 

Limiting and Stationary Distributions, Birth Death Processes 
 

This is module five Continuous-time Markov Chain. In the first lecture, we have 

discussed the definition of a Continuous-time Markov Chain, then we have explained 

how we can derive the Chapman-Kolmogorov equation, then we have defined infinite 

decimal generator matrix. Then I have given the Kolmogorov differential equations in 

the first lecture.  
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In the lecture 2, I am planning to discuss the limiting distribution, stationary distribution 

and steady state distribution; followed by that, I am planning to give a description about 

the birth death processes. And also, some simple examples for the limiting distribution 

stationary, steady state distributions and birth death processes.  
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Before I go to the limiting distribution let me explain the, let me give the example for the 

Continuous-time Markov Chain to get the time dependence solution. This example is the 

very simplest example that is a two states Continuous-time Markov Chain, the default 

one is the time homogeneous. The state space are 1 and 0; 1 we can consider as a up state 

or operational state, and 0 is the down state non operation state. 

So, this can be visualized for the any model, in which the whole dynamics can be 

described with the two state and the Markov properties satisfied. The system going from 

the state 1 to 0 are the time spending in the state 1 before moving into the state 0 that is 

exponential distributed with the parameter lambda. Once it is failed that means the 

system is in the down state, the time spent in the repair time that is exponential 

distributed with the parameter mu. So, once the repair is over, the system is operation 

state therefore, it is in the up state. So, the 0 is related to the down state and 1 is related 

to the up state and the mu is nothing but the mean, 1 by mu is the mean time for the 

repair and 1 by lambda is the mean time of a failure.  

And the failure time is a exponentially distributed with the parameter lambda and the 

repair time is exponentially distributed with the parameter mu. This is the state transition 

diagram for the two states C T M C. The corresponding a q matrix, the infinite decimal 

generator matrix that is consists of it is a two cross two matrix. The system going from 



the state 0 to 1 that rate is mu. The system is going from the state 1 to 0 that rate is 

lambda.  

And the diagonal values are minus of summation of other values, that row, rows are. So, 

0 to 0 is minus mu and 1 to 1 is minus lambda. Therefore, the rates are in the other than 

diagonal elements and the diagonal elements are minus of sum of the row values, other 

than that diagonal element. So, this is nothing but in a very small interval of time delta t 

the system is moving from the state 0 to 1 that probability, the probability of system 

moving from the state 0 to 1 that is nothing but the down state to the up state in a very 

small interval of time delta t. Why we are finding, why we are finding the probability of 

delta t since the model is a time homogeneous, only the interval is matter, not the actual 

time or you can visualize this as the sometime t to t plus delta t also. So, this is the 

interval of delta small negligible interval delta t the system is moving from the state 0 to 

1 that probability is nothing but the rate in which the rate, the rate is nothing but the 

repair rate. 

So, the mean rate mu times the delta t plus order of delta t. So, it is a small o, order of 

delta t means, has a delta t tends to 0 order of delta t will be 0. Similarly, we can 

visualize the probability of system moving from the state 1 to 0 in the interval delta t, in 

the small interval delta t that is same as the failure rate lambda times the delta t that is the 

small interval of time plus order of delta t so this order of delta t also tends to 0 as delta t 

tends to 0. So, using this I can make the forward Kolmogorov equation. I can go for 

writing a forward Kolmogorov equation or backward Kolmogorov equation but forward 

Kolmogorov equation is easy to make out.  

So, if the system is in the state i at time 0 what is the net rate the system will be in the 

state 1 at the time t that net rate is nothing but what are all the inflow that probability rate 

minus what are all the outflows. That is the way you can visualize the right hand side. 

So, all the positive term terms are related to the incoming rates and the all the negative 

terms are related to the outgoing rates. So, since it is a two state model if the system is in 

the state 0 at time t, there is a possibility it it is not moved anywhere from the state 0 or it 

would have come from the state 1. Therefore, the incoming will be the state 1 therefore, 

the system will be in the state 1 at time t and starting from given that the starting from 

the state i that probability multiplied by the rate sort of inflow minus because we are 

writing the equation for the state 0.  



Therefore, it is not moved from the state 0 that is a with the rate mu it can move to the 

state 0 to 1. Therefore, minus mu times, it does not move from the state 0 therefore, 

minus mu times the probability of being in the state 0 at time t, given that it was in the 

state i at time 0, that probability multiplied by minus mu that is outflow and lambda 

times P i 1 t that is inflow. Therefore, the left hand side it is the derivative of the function 

t. It is the probability function.  

So, P i 0 dash t that is nothing but the net rate being in the system at time 0 sorry at time t 

in a state 0 given that it was in the state i at time 0, that net rate is same as a inflow minus 

outflow with the corresponding rates. Similarly, you can write the equation for the state 1 

that means you start from the state 1, either you would have move, you would have come 

from the state 0 to the 1 or you did not move from the state 1. Therefore minus lambda 

times P i 1 of t plus mu times P i 0 of t, that is the net rate corresponding to the state 1.  

Now, we are able to write the forward Kolmogorov equation. So, this is the interpretation 

of the forward Kolmogorov equation, you can write easily by making a matrix P i j of t 

dash that is equal to P i j of t times Q where Q is the infinite decimal generator matrix. 

Then also you will get the same thing so I am just giving the interpretation. Now, my 

interest is to find out the time dependent or transient solution for the, this two state C T 

M C. For that this is difference differential equation we need a initial condition to solve 

these equations. So, I mean the assumption at time 0 the system is in the state 1. 

Therefore, the transition probability of system the P i P 1 1 of 0 that is equal to 1 since I 

made the assumption the system was in the state 0 at sorry the state 1 at time 0 therefore, 

that the being in the state 0 that is going to be 0. So, I need this both the initial conditions 

to solve the equation.  
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So, let me start since I made the initial condition state is 1 therefore, i is equal to 1 so I 

have the first equation that is a I always have the summation of the probability at time t, 

this the transition probabilities are going to be 1, the summation. And also I have a two 

difference differential equations. So, what I can do? I can take the second equation in 

these, then instead of P 1 0 of t I can used the summation of probability is equal to 1 

therefore, the instead of P 1 0 of t I can use the P 1 0 of t is nothing but 1 minus P 1 1 of t 

I can substitute in the second equation. Therefore, I will get a P 1 1 dash of t is equal to 

minus lambda plus mu times P 1 1 of t plus mu substituting P 1 0 of t is equal to 1 minus 

P 1 1 of t in the second equation, in the previous slide. 

Now, i have to solve these differential equation. The unknown is the P 1 1 of t 

conditional probability at use initial condition P 1 1 of 0 is equal to 1, using that I can 

get, I will get a P 1 1 of t is equal to mu divided by lambda plus mu plus some constant e 

power minus lambda plus mu times t. That constant I can find out using this initial 

condition therefore, k is equal to lambda divided by lambda plus mu. So, the P 1 1 of t is 

equal to substituting k is equal to lambda divided by lambda plus mu in this equation 

either the p 1 1 of t. 

Once I know the P 1 1 of t, use the first equation. So, I will get P 1 0 of t is equal to 1 

minus P 1 1 of t. Therefore, P 1 0 of t that is equal to this expression, you can cross 

check now if you add both the equations you will get a 1 and if you put the t equal to 0 



you will get the initial condition also correctly and if you put t tends to infinity that we 

are going to discuss in the limiting distribution, if you put t tends to infinity in this 

expression you will get a mu divided by lambda plus mu lambda divided by lambda plus 

mu. So, this is for the t tends to infinity.  
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Therefore, if you make a matrix the limit n tends to infinity of limit, if you find out the 

limiting distribution of limit t tends to infinity of P i j of t. So, you will get the matrix and 

the this matrix has t tends to infinity for this example it is a two cross two matrix and that 

consists of, for different values you will have a, for, now we are doing for the second 

row therefore, that is equal to lambda divided by lambda plus mu sorry and this is equal 

to mu divided by lambda plus mu. 

So, if the system start from the state 1 at t tends to infinity, the system will be in the state 

0 with the probability lambda divided by lambda plus mu and the system will be in the 

state 1 with the probability mu divided lambda plus mu. Similarly, if you go for i is equal 

to 0 you will get the same derivation and you can fill up what is the element here.  
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So, this is the limiting distribution probability matrix and if you see that the rows are 

going to be identical. So, you will have a, the same identical rows in this row also, that 

means you will get the limiting distribution. 

I will discuss the limiting distribution in the, after giving the one more example I will 

explain in detail. So, this is the transition probability system starting from the state 1 and 

being in the state 1 or 0 at a time t. 
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I am going to give one more example. This has a three states and this is the state 

transition diagram and the values are nothing but the rates in which the system is moving 

from one state to other states. So, that is the difference between the state transition 

diagram of a D T M C and the C T M C. So, this is the rate in which the system is 

moving from one state to another state and some or sorry not the, that means there is no 

way the system is moving from the state 2 to 3 small interval of time.  

Whereas a all the other possibilities are I have given. So, the corresponding Q matrix it is 

a three cross three matrix and you can make out all the row sums are going to be 0 and 

the diagonal elements are minus of sum of other values and the same rows and the other 

than the diagonal elements are the values are greater than or equal to 0. My interest is to 

find out the time dependence solution for a, this example also. I can make a forward 

Kolmogorov equation p dash of t is equal to p of t times q.  

So, three cross three matrix therefore, I will have three equations and I have a one 

equation that can have a summation of probability is equal to 1 and I can start with the 

initial condition the system being in the state 1 at time 0 that probability is 1. I can start 

with that and I can solve those three equations with the initial condition and i can get the 

solution that is a one way. Since it is a finite state C T M C there are many ways to get 

the time dependence solution. 

Basically, you have to solve the system of difference differential equations with the 

initial condition. Here I am using the Eigen value method that means find the Eigen 

values for the Q matrix therefore, use Eigen value and the Eigenvector concept and get 

the P 1 1 of t with the unknowns k 1 k 2 k 3 and to find the unknowns k 1 k 2 k 3 use the 

initial condition. Here I am using the initial condition as well as the Q matrix values, the 

Q 1 1 that means the element corresponding to the 1 comma 1 that is nothing but the P 

dash of 1 comma 1 of 0. Similarly, if I go for Q square matrix and Q 1 1 of 2, the 

element in the 1 comma 1 in the Q square matrix that is nothing but P double dash of 1 

comma 1 0. Therefore, now I can use these three initial conditions to get the unknown 

value k 1 and k 2 k 3, k 1 comma k 2 and k 3. 

So, once I know the k 1 k 2 k 3 I can substitute therefore, the P 1 1 of t is equal to this 

much. Similarly, I can go for finding the P 1 comma 2 of t and P 1 comma 3 of t, I do not 

want P 1 comma 3 in the same way because once I know the P 1 comma 1 comma t and 



P 1 comma 2 comma t. So, 1 comma 3 comma t is nothing but 1 minus of that two state 

probabilities because summation of probability is equal to 1.  So, this is the other way of 

getting the time dependence solution, the transition probability of system being in the 

state j given that it was in the state i at time 0. 
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Suppose, the C T M C has the finite state space then I can use the exponential matrix also 

to get the time dependence solution that is what I have given this way. So, start with the 

forward equation. Therefore, the solution is going to be P of t is equal to P of 0 e power 

Q of t, e of t is the matrix, P of 0 is the matrix, e power Q t that is also again going to be 

a matrix, exponential matrix. Therefore, I am writing e power Q t is nothing but Q is a 

matrix and the t is the real value. 

So, if greater than or equal to 0 therefore, e power Q  t is going to be the i matrix, i matrix 

is nothing but the identical matrix of order whatever the state space number plus the 

summation i is equal to, n is equal to 1 to infinity of Q power n times t power n divided 

by n factorial. So, that the whole thing is going to be the exponential matrix and using 

that you can get the P of t. That is a, I am not going detailed for how to compute this e 

power Q t and so on. But whenever you have C T M C with the finite space through this 

method also one can get the time dependence solution. So, with this I have completed the 

examples for the C T M C to find out the time dependent or transition probabilities. 
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Now I am moving into the limiting distribution. The way we discussed the limiting 

distribution for the C T M C the same concept can be used for the C T M C also. The 

change is a instead of the one step transition probability matrix, here we have to use the 

infinite decimal generator matrix in a different way.  

So, I am first giving the Ergodic theorem. Whenever the C T M C is a reducible that 

means all the states are communicating with all other states. Since, all the states are 

communicating with all other states if one is of the particular type, it is a positive 

recurrent then all the other states are going to be a positive recurrent. If one is going to be 

a null recurrent then all the other states are also going to be a null recurrent. 

So, here I am making the assumption the C T M C’s irreducible as well as all the states 

are positive recurrent. Then the limiting distribution always exists. Suppose, it is 

independent of initial state, it need not be a independent of initial state. Suppose the same 

thing is independent of initial state then I can write that limiting probabilities P i j of t 

since it is independent of i I can write it has i j, then I can form a vector and a since it is a 

limiting distribution, it is a probability distribution therefore the probabilities are, this 

probabilities are always greater than or equal to 0 and the summation of probability is 

going to be 1. It would not be defective, it would not be less than 1. That is the Ergodic 

theorem says whenever you have a irreducible C T M C with all the states are positive 

recurrent then as t tends to infinity the system has the distribution, limiting distribution. 



If it is independent of initial state then you can label with the pi j has a probabilities and 

this probability distribution satisfies, it is a probability mass function f it satisfies the 

probability mass function conditions.  

That means whenever you have a dynamical system in which it is a irreducible model 

and all the states are positive recurrent that means the mean recurrence time is going to 

be a finite value then that system is call it is a Ergodic system or the Ergodic theorem 

concept can be used therefore, as t tends to infinity you can get the limiting distribution. 

If it is independent of initial state means whatever be the see it you are going to do it for 

the discrete event simulation for the dynamical system, that is Ergodic’s, for a Ergodic 

system then the initial conditions see it does not matter to get the empty distribution. 

Later we are going to give some few examples how to find out the limiting distribution.  
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I am explaining the stationary distribution also. The stationary distribution the way I 

have explained the D T M C sorry in the way I have discussed the D T M C, the C T M 

C also same. So, I have a vector, if the vector satisfies these three conditions, 

probabilities therefore, greater than or equal to 0, summation is equal to 1 and you should 

able to solve this equation and get the pi’s. So, homogeneous equation so you need a 

second condition to have the non 0 probabilities. So, if you solve pi q is equal to 0 along 

with the summation of pi j is equal to 1 and if this pi j’s exist then the C T M C has the 

stationary distribution. 



The similar way I have discussed the stationary distribution for the D T M C model also 

instead of pi Q is equal to 0 we had a pi P is equal to pi. So, if any vector satisfies that pi 

P is equal to pi and summation of pi i is equal to 1 and the all the pi’s are greater than or 

equal to 0. 

Then that is going to be a stationary distribution for D T M C, the same way if pi Q is 

equal to 0 and pi summation of pi j is equal to 1, pi j’s are greater than or equal to 0. If 

this is satisfied by any vector, then that is going to be the stationary distribution for a 

time homogeneous C T M C. 
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Every time we are discussing the default C T M C that is the time homogeneous C T M 

C. The main result for the stationary distribution, whenever you have a irreducible 

positive recurrent C T M C, the stationary distribution exists and that is going to be 

unique whenever the C T M C is a positive recurrent as well as irreducible. 

There is no need of periodicity in the C T M C whereas, the same as stationary 

distribution the stationary distribution for the D T M C we have included one more 

condition that is a periodic, but for the C T M C there is no periodicity for the state. 

Therefore, as long as the system has, system is a irreducible and a positive recurrent 1 

then the stationary distribution exists and it is unique and by solving these equations you 

can get the unique stationary distribution.  
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The way I would have explained the time reversible concept in the D T M C, the C T M 

C also has the time reversible concept. So, the time reversibility equation is a pi i is equal 

to pi i times q i j is equal to pi j times q j i. The q’s are nothing but the rates and the pi’s 

are nothing but the probability values. So, if pi is, pi i’s exist, if pi i’s exist this stationary 

probability or stationary distribution exist then if the stationary distribution exist as well 

as the time reversibility is satisfied by C T M C, then that C T M C is a positive recurrent 

and you can say that it is a time reversible and the solution pi can be pi is nothing but the 

stationary distribution. So, this result says for a irreducible C T M C if there exist a 

probability solution pi, satisfy the time reversibility equation, this is the time reversibility 

equation where q’s are rates, pi’s are the probability solution.  

If it is satisfied by the irreducible C T M C the time reversible equation then that C T M 

C has a positive recurrent states and that C T M C is called a time reversible as well as 

the pi is called the stationary distribution. So, initially we have not taken has a stationary 

distribution, some probability solution satisfies the time reversibility equations and it is 

the irreducible C T M C, then that C T M C has a positive recurrent states and pi is 

nothing but the unique stationary distribution. 

So the usage this concept is whenever any C T M C is, first it is a irreducible and 

satisfies the time reversibility equation of this form then you do not want to solve pi q is 

equal to 0 and summation of pi i is equal to 1 to get the stationary distribution. Instead of 



that use this time irreversibility equation instead of solving pi q is equal to 0 and then use 

the summation of pi i is equal to 1 to get the one unknown. That means use a time 

reversibility equation repeatedly, recursively and get all these in terms of one unknown 

either pi naught or pi 1 whatever it is, then use the summation of pi i is equal to 1 to get 

to find the that unknown instead of solving pi q is equal to 0 . 

So, whenever it is model is irreducible and the time reversibility equations are satisfied 

then you can conclude all the states are positive recurrent and you can find pi the 

stationary distribution in easy way instead of solving pi q is equal to 0.  
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I am going to give a one simple example what is the limiting and stationary distribution. 

Take the two state C T M C and we know that Q matrix and you can verify whether this 

is going to be irreducible and the positive recurrent. Since it is a finite state model and 

both the states are communicating each other. Therefore, it is a irreducible positive 

recurrent states. So, you can solve pi Q is equal to 0 and the summation of pi i is equal to 

1. So, pi times Q pi is the vector, Q is the matrix and again 0.  
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Therefore, if if I take the first equation I will get minus mu times pi naught plus pi 

lambda times pi 1 is equal to 0 by taking the first equation minus mu pi naught plus 

lambda times pi 1 that is equal to 0. From this I can get the pi 1 in terms of pi naught 

since it is a homogeneous equation I have to use a one unknown homogeneous or 

normalizing condition, summation of pi i is equal to 1. So, using that I will get pi naught 

is equal to lambda divided by lambda plus mu. Once, I know pi naught then pi 1 is equal 

to mu divided by lambda plus mu. So, this is the stationary distribution as well as the 

limiting distribution because it satisfies both the conditions.  
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Take the second example. Second example also finite state model, all the states are 

communicating with all other states. Therefore, it is a irreducible. Since, it is a finite state 

model you would not have a null recurrent. The, it is a positive recurrent model. So, I can 

solve pi Q is equal to 0 and the summation of pi i is equal to 1. So, there are three 

equations. So, I take the first two equation and one normalizing equation and solve these 

three equation I can get pi 1 pi 2 pi 3. 

You can verify that the summation is going to be 1. So, this is the limiting distribution as 

well as the stationary distribution because the model is the irreducible positive recurrent 

model. So, this limiting distribution and the stationary distributions are one and the same. 

Instead of solving pi Q is equal to 0. You can use the time reversibility before that you 

should verify whether the time reversibility equations are satisfied by this model. If this 

model satisfies the time reversibility equation for all i comma j then you can conclude, it 

is a time reversible Markov chain and so on but a example 1 is the time reversible 

Markov Chain where as the example 2 is not a time reversible Markov chain you can 

verify it.  
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Now, I am moving into the special case of Continuous-time Markov Chain that is a birth-

death process. This is the very important time homogeneous Continuous-time Markov 

Chain because many of the scenario can be mapped with the birth-death process, either 

with the finite state or infinite state.  



Let me first give the definition of birth-death process. I started with the Continuous-time 

Markov Chain that is the time homogeneous Continuous-time Markov Chain with the 

state space countably infinite, it can be a finite also and that C T M C is going to be, call 

it as a birth-death process. If there exists a constants lambda i’s and mu i’s such that in 

these are all nothing but the infinite decimal generator matrix elements and this is i to i 

plus 1 that rate is always lambda i. And the rate in which the system is moving from the 

state i to i minus 1, that rate is a mu i and the diagonal elements are minus of lambda i 

plus mu i.  

Whereas all the other rate rates the system is moving from the state i to j other than i to i 

plus 1, i to i minus 1 and i to i and all other rates are is always 0, absolute of i minus j is 

greater than 1. That means you will have the infinite decimal generator matrix in which 

you will have only, have a diagonal matrix, tri diagonal matrix and all other elements are 

going to be 0. 
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I can write down the condition so that it land up the rates are going to be only lambda i’s 

and mu i’s, so 1, not all other rates are going to be 0. So, if I start with i is equal to 0 the 

system is moving from the state 1 to 0 in the interval of delta t because it is a time 

homogeneous model. So, this nothing but this probability this is moving from the state 1 

to 0 in the interval of delta t. That is nothing but the rate is a mu 1 times delta t plus order 

of delta t. Similarly, the system is moving from the state 0 to 0 from the time t to t plus 



delta t or during the interval delta t that is nothing but 1 minus lambda naught times delta 

t plus order of delta t. 

So, this mu i’s and the lambda naught and so on, this values are always going to be a 

greater than or equal to 0, strictly greater than 0 also. For i is greater than 0 the system is 

moving from the state i to i that is 1 minus lambda i times delta t minus mu i times delta t 

plus order of delta t. Whereas a system is moving from i plus 1 to I, one step backward 

that is mu times i plus 1 delta t. The system is moving from the state i minus 1 to i for i is 

greater than 0 that is forward one step move that is lambda times i minus 1 delta t plus 

order of delta t.  

These order of delta t it may be a function of delta t, it need not be the same. As a t tends 

to, as a delta t tends to 0 this quantity is a, are going to be 0, order of delta t divided by 

delta t is going to be 0. Therefore, this is the way the system is moving from the one state 

to either one step forward or either one step backward or move anywhere. So, these are 

all the only three possibilities with these probabilities.  
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Therefore, we land up the q matrix is going to be the system is moving from the state i to 

i plus 1 forward one move, that rate is lambda i’s and the system is moving from the i to i 

minus 1 one step backward that is mu i or the system being in the same state, that rate is 

minus lambda i plus mu i. Therefore, there is no other move from the system from one 

state to all other states, either one step forward or one step backward.  
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So, this can be visualized in the state transition diagram. Since, I started with the state 

space 0 to infinity, there is a possibility you can have a label from some negative integers 

to the positive integers, so you can always transform into something therefore, default 

scenario or the simplest one I discussed from 0 to infinity. Therefore, you can visualize 

whatever be the label that can be transfer, you know one to one fashion. So, this the rate 

in which the system is moving from the state 0 to 1, that rate is lambda naught. 

The system is moving from the state 1 to 2, that rate is lambda 1 or the system is moving 

from the state 1 to 0 that rate is mu 1. Therefore, the time spent in the state 1 before 

moving into any other states that is a minimum of the time spending in the state 1 before 

moving into the state 2 or the system time spending in the state 1 before moving into the 

state 0. So, both are exponentially distributed with the parameters lambda 1 and mu 1 

and the minimum of that time is the spending time or the waiting time in the state 1 that 

is going to be exponential distribution with the parameter lambda 1 plus mu 1 because 

both are independent, the time spending in the state 1 before moving into the state 2 and 

similarly, the time spending in the state 1 before moving into the state 0 and both the 

random variables are independent, that is a assumption. Therefore, it is going to be a 

exponentially distributed random, the time spending in the state 1 that is exponential 

distributed with the parameter lambda 1 plus mu 1.  



Like that you can discuss for all other states. So, whenever you have the birth-death 

process the system either move one step forward or one step backward. Then it is called 

a birth-death process. Therefore, here this is lambda i’s are called the system is moving 

from one state to pass forward one step therefore, this lambda is are called birth rates. 

The system is moving from one state to the previous one state and the corresponding 

rates mu i’s mu 1 mu 2 mu 3 and so on and these rates are going to be call it as a death 

rates.  
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So, lambda i’s are nothing but the lambda i’s are nothing but the birth rates that means 

the rate in which the system is moving from the state i to i plus 1 that depends on i 

therefore, that rate is lambda i. The system is moving from the state i to i minus 1 that is 

related to the death by 1, that is a function of i therefore, the death rate is mu i. So, the 

lambda i’s are the birth rates and the mu i’s are the death rates. 
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Therefore this is suppose example the system moving from the state 2 to 1 the death rate 

will be mu suffix 2. So, you can fill up the Q matrix; if you see the Q matrix which a tri 

diagonal matrix.  
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So, here I am giving few examples for the birth-death process. In the first example it 

consists of, the first example is a finite state model. The birth rates are lambda naught 

lambda 1, 3 lambda n minus 1. 



The death rates are mu 1 mu 2 and mu n. It is a finite state birth-death process. The 

second example is the infinite state birth-death process, the third example the all the 

death rates are 0, that is also possible. The fourth example, all the birth rates are 0 that is 

also possible, but you can discuss the, one can discuss the straight classification also. The 

first one, all the, it is a finite state model, all the states are communicating with all other 

states. Therefore it is a irreducible positive recurrent birth-death process. The second one 

is the infinite state, all the states are communicating with all other states. It is irreducible, 

but one cannot conclude without knowing the values about the lambda naughts and 

lambda i’s and mu’s i’s, one cannot conclude it is a positive recurrent or null recurrent, if 

the mean recurrence time that is going to be a finite one then we can conclude it is a 

positive recurrent otherwise it is null recurrent. 

So, as you choose one cannot discuss now the positive recurrent or null recurrent, but 

you can conclude it is a recurrent state. The third example, the system is keep moving 

forward. Therefore, all the states are transient states. It is not a irreducible, it is a 

reducible model, all the states are transient states. That means as the t tends to infinity, 

the system will be in the, some infinite states. So, one cannot define a infinite state 

therefore, the limiting distribution would not exist in this situation. 

The fourth example it is a finite model, but all the states are not communicating with the 

all other states therefore, it is a not a irreducible, it is a reducible model. Whenever the 

system starts from some state other than 0 over the time the system is keep moving 

backward and once it reaches the state 0 it will be forever. Therefore, the state 0 is a 

observing barrier, state 0 is the observing state and all other states 1 to n, those states are 

the transient states. The limiting distribution exist. The system will be in the state 0 at t 

tends to infinity with the probability 1 and the all other states are transient state therefore, 

the probabilities are 0.  
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We are discussing the forward Kolmogorov equation for a special case of Continuous-

time Markov Chain that is a birth-death process or a birth-death process the Q matrix is a 

tri diagonal matrix. Therefore, you will have a, in the equations from the forward 

Kolmogorov equation you will have a only two terms in the right hand side for the first 

equation and you will have only three terms the diagonal element and to of diagonal 

elements and therefore, the second equation one can, the first equation one can discuss 

first the P dash of i comma 0 that is nothing but the system is not moved from the state 0, 

moving from the state 0 that rate is a lambda naught.  

Therefore not moving minus lambda naught times the probability and (( )) or the system 

can come from the state 1 with the rate mu 1. Therefore, mu 1 times P i comma 1 of t. 

For all other equations either the system comes from the previous state with the rate 

lambda j minus 1 or it comes from the forward 1 state with the rate mu j plus 1 or not 

moving anywhere. So, these are all the, all possibilities therefore, with these three 

possibilities you have a three terms in the right hand side and that is the net rate for any 

state to j. So, if you solve this equation with these initial condition Kolmogorov delta i 

comma j you will have the solution of P i comma j. 
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Here I am discussing the steady state distribution. The way I have discussed the limiting 

distribution that is the limit t tends to infinity, probability of i comma j of t insist then it 

is called a limiting distribution and the stationary distribution is nothing but for the D T 

M C it is a pi p is equal to p, summation of pi i is equal to 1, for the C T M C it is pi q is 

equal to 0 and the summation of pi i is equal to 1. That is going to be a steady state 

distribution, stationary distribution.  

Now, I am discussing the steady state distribution that is nothing but when t tends to 

infinity the birth-death process may reach steady state or equilibrium condition. That 

means the state probabilities does not depend on time. That is a minimum of steady state 

distribution as a t tends to infinity, whenever we say the birth-death process reaches a 

steady state or equilibrium that state probability does not depend on time. That means if 

a steady state solution exist since the time depend, since the state probabilities does not 

depend on time t the derivative of the time dependence state probability at time t, that 

derivative at t tends to infinity becomes 0, if the steady state solution exist. Since the 

state probabilities does not depend on time t as a t tends to infinity I can write as a pi i’s a 

limit t tends to infinity of pi i of t. 

So, this is different from the way we discuss earlier that conditional probability p i j of t, 

but using p i j of t one can find out what is pi i j, pi i of t that is nothing but the pi i of t 

that I have given in the first lecture for the C T M C.  
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The pi i of t that is nothing but what is the probability that the system will be in the state i 

at time t. That is same as what is the probability that the system will be in the state i 

given that it was in the state some k at time 0 multiplied by what is the probability that it 

was in the state k at times.  

That is nothing but summation of k and this is nothing but the transition probability and 

this is nothing but the initial probability at the limit. So, using P k i of t or P i j of t that is 

the conditional probability one can get the unconditional probability, this is the nothing 

but the distribution of x of t. So, this is the probability mass function, probability mass at 

state i. Now, what I am defining whenever the steady state distribution exist that means it 

is independent of time t. Therefore, as t tends to infinity the pi i of t can be written as the 

pi i. And whenever the steady state solution exist I can use the limit t tends to infinity, 

the derivative of pi i of t that is going to be 0.  
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Therefore, I am going to use these two to get the steady state probabilities for the birth-

death process. Since, as t tends to infinity the derivative of pi i j of t is equal to 0 

therefore, the all the left hand side in the forward Kolmogorov equation that is going to 

be 0, the right hand side you will have a as a t tends to infinity the pi i of t that can be 

written as the pi 0 and pi 1. So, the way we write the conditional probability for p i j in 

the Kolmogorov forward equation you can write the similar equation for the 

unconditional probability pi i’s also.  

Now, I am putting the left hand side zero’s because of these condition limit t tends to 

infinity the derivative is equal to 0 and the right hand side I am using as a t tends to 

infinity this probabilities is nothing but the pi i’s therefore, it is going to be minus 

lambda naught times pi naught plus mu 1 times pi 1 and all other equation has a three 

terms in this homogeneous equation and you need a one normalizing condition. 

So, from this homogenous equation I can get recursively pi i’s in terms of pi naught. So, 

from the first equation I can get a pi 1 in terms of pi naught and the second equation I 

can get pi 2 in terms of first pi 1, then I can get a pi 1 in terms of pi naught. Therefore, 

recursively I can get pi i’s in terms of pi naught, for all i greater than or equal to 1.  
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Now, I can use the normalizing condition summation of pi is equal to 1. Therefore, I will 

get a pi naught is equal to 1 divided by summation of this many terms in the product 

form. Since, we need a steady state probabilities and all the pi i’s are in terms of pi 

naught as long as the denominator is converges you will have a pi 0 is greater than 0. 

So, once pi 0 is greater than 0 then you will get all the pi i’s with the summation of pi i is 

equal to 1. So, whenever these series converges then I will have a steady state 

distribution with the positive probability and summation of probability is going to be 1. 

So, this is the condition for a steady state distribution for a birth-death process because 

we started with the birth- death process forward Kolmogorov equation using these two 

conditions we have simplified into this form and use the normalizing condition and get 

the pi naught as long as the summation is or the series is converges then you will have 

the steady state, if the series diverges that means by substituting the values for the 

lambda i’s and mu i’s and if the series denominator series diverges then the pi naught is 

going to be 0, in turn all the pi i’s are is equal to 0 therefore, the steady state distribution 

will not exist if the denominator series diverges.  
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I am going to give a one simple result for a irreducible positive recurrent time 

homogeneous C T M C. We know that the limiting distribution exist, the stationary 

distribution exist. Now, I am including the steady state distribution also exist. I have 

given for the steady state distribution for the birth-death process, not for the C T M C, 

but here I am giving the result for the C T M C. All the three distributions exist and all 

are going to be same.  
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Whenever the C T M C is a time homogeneous irreducible positive recurrent all these 

three distribution are same and one can evaluate, one can solve this two equations pi Q is 

equal to 0 and if the summation of pi i is equal to 1 you can get the limiting distribution, 

stationary distribution or steady state or equilibrium distribution. As, a special cases of 

birth-death process I am going to discuss these two process in this lecture.  
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Whenever we say the birth-death process is a pure birth process that means all the death 

rates are going to be 0. We started with the birth-death process with the only lambda i’s 

are greater than 0 and the mu i’s are going to be 0, then it is going to be called as a pure 

birth process. There is a one special case of pure birth process with lambda i’s are going 

to be constant that is lambda, that is a Poisson process. That I am going to discuss in the 

next lecture and in this pure birth process this lambda i’s are the function of i. Here all 

the states are transient states. 
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Here I am discussing the pure death process. A birth-death process is said to be a pure 

death process if the birth rates are 0 and the death rates are non 0. In particular we shall 

obtain the time dependent probabilities of a pure death process in which the death rates 

mu i’s are equal to i times mu. As a given the example as a fourth example in the birth 

death process, this state 0 is the observing barrier. Therefore, the state 0 is a observing 

state and all other states are going to be transient state and here the limiting distribution 

exist and one can also find the time dependent probabilities for this model.  
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Suppose you start with the assumption the system at time 0 in the system is in the state n 

at time 0.  
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The systems in the state n at time 0 with that assumption I can frame the equation that is 

pi n dash of t is equal to minus n times mu of pi n of t. That means the rate in which the 

system is moving in the state n that is nothing but not moving to the state n minus 1 with 

the rate n minus n times mu. Therefore, the equation for the state n that is pi n dash of t 

that is equal to not moving from the state n therefore minus that outgoing rate that is n 

times mu being the state is n therefore, pi n of t. I can use the initial condition pi n of 0 is 

equal to 1. 

So, I will get pi n of t. For the second equation I have to go for what is the equation for 

the state n minus 1. So, the pi n minus 1 dash t that is nothing but either the system come 

from the state n or not moving from the state n minus 1. Therefore, system coming from 

the state n that is a n mu times the system being in the state n minus n minus 1 times mu i 

n minus 1 of t. So, we will have a two terms in the right hand side coming from the one 

forward state or not moving from the same state. So, you will have two terms for j is 

equal to 1 to n minus 1. For the last state that is the state 0 the systems come from the 

state 1. Since, the state 0 is observing states there is no second term. So, it is going to be 

mu times pi 1 of t.  



So, you know pi n of t, use the pi n of t in the equation for n minus 1 and get the pi n 

minus 1. Like that you will find out till pi 1, use the pi 1 to get the pi 0 of t.  
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Use the recursive way. So, using the recursive way you will get the pi j of t is equal to n 

c j combination n c j and e power minus mu times t power j. This is survival probability 

of system being in the state and 1 minus e power minus mu of t n minus j. Suppose the 

system being in the state j that means from the state n this many combination would have 

come and the survival probability is e power minus mu times t, that power.  
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So, this is nothing but the probability p power j and 1 minus p power n minus j. 

Therefore, this pi j follows a binomial distribution with the survival probability e power 

minus mu t being in the state j. 
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So for the pure death process, I have explained the time dependent probabilities of being 

in the state j that is unconditional probability. So, with this the summary of this lecture is 

I have discussed the limiting stationary and steady state distributions. I have introduced 

birth-death process, some important results also discussed; and at the end, I have 

discussed the pure birth and pure death processes also. In the next lecture, I am going to 

explain the important pure birth process that is the Poisson process, and these are all the 

reference books. Thanks. 


