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In this, we are discussing a discrete-time Markov chain. And we have finished already 

two lectures on this module, and this is the third lecture – classification of states and 

limiting distributions. 
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In this lecture, I am going to give the information about the classification of the states for 

the time-homogeneous discrete-time Markov chain. Then I am going to give the 

definition of a limiting distribution. Then I am going to discuss a few simple examples, 

so that we can understand the classification of states as well as the limiting distribution. 

Why do you need classification of states? Whenever we study the time-homogeneous 

discrete-time Markov chain our interest is to find out the limiting distribution of the 

random variable X n. To study the limiting distribution or a stationary distribution, later 

we are going to use the word called equilibrium distribution. All those things, you need 

the classification of a state. Without the classification of states, we cannot come to the 



conclusion, whether the limiting distribution exists, whether that is going to be unique 

and so on. So, for that we need classification states. 
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Before moving into the classification of states we need some concepts, so that using 

those concepts, we can classify the states. The first concept is called accessible. When 

we say the state i is said to be accessible from the state j; whenever the P suffix j to i in n 

steps has to be greater than 0 for some n, which is greater than or equal to 0. We are 

including n is equal to 0 for the safer side. Whenever we say the state i is set to be 

accessible from the state j, if the P j comma i in n steps, has to be greater than 0; that 

means this is the transition probability from the n step transition probability matrix. And 

if that element is going to be greater than 0, then we say, the state i is set to be accessible 

from the state j. 

Using these, we can write down, what is the probability that ever enter state i given that, 

initially, the system is in the state j. You can find out what is the probability of the 

system ever enter to the state i given that, initially, it was in the state j. That is nothing 

but the union of all the events corresponding to the X n takes a value i given that it was 

in the state j initially. We can find out, what is the probability that, ever entering the state 

i given that, initially, the system is in the state j. That is the union of the probability of 

union of X n is equal to i given that, X naught is equal to j. 
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Now, I am going to define… Now, I am going to give the next concept called 

communicate using the accessible. Two states are set to be communicate; that means the 

state i is accessible from the state j as well as the state i that is accessible from state i. 

Whenever the state i is communicate with the state j; that means state i is accessible from 

state j as well as the state j is accessible from state i. In notation, we can use the notation 

i arrow in both sides with j. State i is communicating with the state j; it means state i is 

accessible from state j as well as the state j is accessible from state i. 
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Since I use the concept of access to define communicate, it is going to satisfy few 

properties. The first property – any state communicate with itself; that means the P i i of 

0; that is nothing but what is the probability that X naught is equal to i given that, X 

naught is equal to i; that is going to be 1 for all I – any state communicate with itself. The 

second one… That means in notation, i communicates with the i itself. The second 

property – if state i communicate with the state j, then the state j communicate with the 

state i also; that means it is a symmetric property; that means if i communicates with j, 

then j communicates with i. The communicate satisfies the symmetric property. The third 

one – if i communicate with j and j communicate with k, then we can conclude, i 

communicates with k. This relation is called transitive.  

So, the communicate – that property satisfies itself; and it satisfies the symmetric 

property as well as the transitive property; that is, if i communicates with the state j and 

the state j communicates with the state k, then the state i communicates with the state i. 

Communication is an equivalence relation on the set of states. And hence, this relation 

partitions the set of states into communicating classes. I am not giving the proof here. So, 

one can easily prove; using the one-step transition probability and n-step transition 

probability matrix and the accessible concept, one can prove these three properties. 
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Now, I am going to define the next concept called class property. What is the class 

property? A class of state is a subset of the state space S such that every state of the class 



communicates with every other states and there is no other state outside the class which 

communicates with all other states in the class; instead, the time-homogeneous discrete-

time Markov chain. Since it is a discrete-time Markov chain, you have a state space; the 

state space may be a finite number of elements or countably infinite number of elements. 

So, that is the state space S. In the state space S, you are going to create a subset. That is 

going to be called as a class, if within the subset of that collection, it satisfies the 

communicate; that means each state inside the class has to be communicate with each 

other state.  

And also, it has to satisfy the second property, that is, no other state outside the class, 

which communicates with all other states in the class; that means (( )) you can start with 

one element, then you can include one more element and you can include one more 

element. Once this property is satisfied; that means you cannot make including one more 

state and make it as a class; then you have to stop framing the class. So, the subset will 

be created by including one more state, one more state, one more state in the state space 

as long as this property is satisfied. So, once the second property violates; that means we 

should stop with creating the subset and that is going to be the class. We are going to 

discuss this – how to create the class via simple examples. So, that I am going to do it 

later. 
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Next concept is periodicity. The definition of periodicity goes like this – the state i is a 

return state if the P i comma i of n, which is greater than 0 for some n, which is greater 

than or equal to 1. First, I am defining what the meaning of return state is. Here any state 

is going to be called as a return state, if the probability of starting from the state i coming 

to the same state in the nth step if that is greater than 0, then we say it is a return state. 

Now, I am going to define the periodicity only for the return state. The period – in 

notation, it is d suffix i – suffix i – i is for the state – of a return state i is defined as the 

greatest common divisor of all m such that P suffix i comma i of m, which is greater than 

0. So, the period of a return state is going to be an integer. And that integer is computed 

by using the greatest common divisor of all the possible m such that the P i comma i of 

m should be greater than 0; that means we find out how many steps you will take to 

come to the same state if you start from the state i. You collect all the possible number of 

steps; you will come back to the state with the positive probability; and you find out the 

greatest common divisor of those integers – those positive integers. Then that number is 

going to be the period or periodicity of the return state or the period of the state; that 

means we can write down in short, d suffix i is the greatest common divisor collection of 

m such that the P i i of m should be greater than 0. 

If the greatest common devisor of collection of m such that greater than 0; if this d i is 

going to be 1, then we say that state is a periodic state; otherwise, if it is greater than 1, 

and whatever be the integer you are going to get; and that is going to be the period of the 

state i. If the period is going to be 1, then we call it as a periodic state. Note that, 

whenever you have a class in which we have more than one state; if one state has the 

period some number, then the other states of the same class also going to have the same 

period. That can be proved easily. So, within the class, all the states will be having the 

same period. 
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Now, I going for the next concept called closed set of states. Closed set of states – if C is 

a set of states such that no state outside capital C can be reached from any state in capital 

C, then we say then the collection or the set C is said to be closed. So, whenever you 

create a collection of states; and that set we call it as a capital C. If it satisfies this 

property, then we say that set is called the closed set. So, we can combine the class 

property with the closed set property. If both the properties are satisfied; that 

communicates with each other as well as the close property is satisfied, then you can say 

that, the closed communicating class. So, any subset in the state space S – if it satisfies 

each element within the set is communicate each other and satisfies this property, then 

we say that collection is going to be a closed communicating class. 

There is a possibility in a set; you can have more than one element, more than one state 

in the collection. The class may have only one element or it may be more than one 

element. If any closed set or the close communicating class has only one element; that 

means you cannot include one more state and to make it as the closed or communicating 

class; then that closed set is called… or that state is called only one element in capital C. 

Then the state i is called absorbing state. A state i is said to be absorbing state; then it is 

going to form a close communicating class, which has only one element in that class. 

There is a possibility more than one element, is also possible in the closed 

communicating class.  



So, we can define the absorbing state through the closed communicating class; or, we 

can make it in the same absorbing state using the definition, P i i in steps one that is 

going to be 1; that means if you see the one-step transition probability matrix, the 

diagonal element of that corresponding state – the corresponding role – the element is 

going to be 1; that means the system starting from the state i; and in one step, the system 

moving to the same state i; that probability is 1. If this probability is 1, then we say that 

state is going to be absorbing state. In the other way round, we can go for defining the 

absorbing state via closed communicating class, has only one element also. So, there are 

two ways we can say the absorbing state. 

(Refer Slide Time: 17:45) 

 

Using these concepts, I am going to develop the next concept called irreducible Markov 

chain. We are discussing time-homogeneous discrete-time Markov chain; whereas, this 

concept called irreducible – that is valid for the discrete-time Markov chain as well as the 

continuous-time Markov chain. So, that we are going to discuss later. 

Now, I am defining the irreducibility for a time-homogeneous discrete-time Markov 

chain. If the Markov chain… Since the irreducible concept comes for the discrete-time 

Markov chain and the continuous-time Markov chain; who use the word called Markov 

chain; that is valid for both. If the Markov chain does not contain any other proper closed 

subset other than the state space capital S, then the Markov chain… In short, we can use 

the word MC for Markov chain; then the Markov chain is called irreducible Markov 



chain. Whenever the state space cannot be partitioned into more than one closed set – the 

proper set; that means you can have only one closed set and that is same as the capital S. 

All the elements in the state space is going to form only one closed set; in that case, that 

Markov chain is going to be called as irreducible; irreducible means you cannot partition 

the state space. 

If more than one closed proper closed subsets are possible from the state space, then that 

Markov chain is going to be called as a reducible Markov chain. If more than one or we 

can able to make the partition of the state space into more than one closed set as well as 

few transient states and so on; that I am going to discuss later. So, whenever you are not 

able… If you are able to partition the state space, then that is going to be a reducible 

Markov chain. If you are not able to partition the state space and the whole state space is 

going to be only one proper closed subset, then that Markov chain is going to be called 

as a irreducible Markov chain. In this case, all the states belonging to that class is going 

to form a one class. And since it is going to have only one class, all the states going to 

have… If one state has the period something, then all the other states are also going to 

have the same period. Because you are not able to partition, you have only one class. 

Therefore, if one state has the period some number – some integer, then that same period 

will be for all other states also. So, the Markov chain, which are not irreducible are said 

to be reducible or non-irreducible Markov chain. 
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Now, I am going to give the next concept called first visit. We did not come to the 

classification of a state. Before that, we are developing few concepts. Using these 

concepts, we are going to classify the states. The next concept is called first visit. What is 

the meaning of first visit? I am going to define the probability mass function as the f 

suffix j k with superscript n; that means what is the probability that the system reaches 

the state k for the first time; that is important. For the first time at the nth time step given 

that the system starts the state j initially. This is the conditional probability mass function 

of a system moving from the state j to k and system reaching the state k at the nth time 

step for the first time. That is important. So, this is the first time, the system reaches the 

state k at the nth step – exactly, at the nth step. 

And, this conditional probability mass function – that I am going to write it as the f 

suffix j k of n. This is different from the P j k of n. This is also conditional probability. 

Whereas, this probability is defined, what is the probability that the system reaches the 

state k at the nth time step given that it was in the state j initially. This is also conditional 

probability. The only difference is the first time; that means there is a possibility the 

system – here the P suffix j k of n means there is a possibility the system would have 

come to the state k before nth step also. So, that probability is included. Whereas, the f 

suffix j comma k at the nth step means this at only the nth step, it reaches the state k. 

Therefore, the way I have given the first time conditional this probability and this is not 

necessarily the first time; this is also conditional probability; I can relate the f suffix j 

comma k with the P suffix j comma k.  

Both are in the n-step transition probability. But one is for the first time; the other one is 

not necessarily. I can relate both in the form of P j suffix k superscript n, that is, the n 

step. That is same as f suffix j k of r steps and P suffix k k of n minus r steps; and r can 

vary from 0 to small n for n is greater than or equal to 1. This means if the system is 

moving from the state j to k in n-step, not necessarily the first time; that can be written as 

the union of mutually exclusive events for different r in which the system moves from 

the state j to k in r steps for the first time. 

And, the remaining n minus r steps – there is the possibility the system would have 

moved from the state k to k not necessarily the first time. And possible r can be 0 to 

small n. And this n can be vary from 1 to infinity. Obviously, we can make out the… I 

can give the P k k of 0 step; that is going to be 1. And similarly, we can make out f suffix 



j of k, that is, 0 steps also 0; and f j k of one step – that is nothing but the P j k. The first 

time, the system is moving from the state j to k in one step. That is same as the one step 

transition probability. The first time and one-step transition probability is same. 

Whereas, for n is greater than or equal to 1; then it is going to be the combination of the 

first time with not necessarily the first time n minus r step transition probability. That all 

possible events – that will give altogether final probability. So, here we have use the total 

probability root as well as the Chapman-Kolmogorov equation for the time-

homogeneous discrete-time Markov chain to land up giving the relation between the P j 

k with the f j k. 

(Refer Slide Time: 27:45) 

 

Now, I am going to give the next concept called first passage time distribution. First 

passage time distribution – that is written in the F suffix j k; that is nothing but what is 

the probability that, the system start with the state j will ever reach state k. So, this 

probability I am writing as F suffix j comma k. Therefore, this is same as… There is a 

possibility it would have gone to the state k in n steps first time. And all the possible 

steps for the first time – that union will give F j comma k. What is the conditional 

probability that, the system is starting from the state j and ever entering into the state k; 

that is, all the possible of first time to reaching the state n and all possible n – that will 

give the probability of ever visiting the state k starting with the state j. 



Now, we have two issues or two cases. One is what is F j k, which is less than 1? What is 

the situation corresponding to this probability is going to be less than 1? The other case 

of interest is when F j k is equal to 1; that means with the probability 1, you will be ever 

visiting the state k by starting from the state j with the probability 1; or, whether this 

probability is going to be less than 1. If it is less than 1, then it is not the correct one; that 

means with the 1 minus of this probability, there is a possibility you would not ever visit 

the state k if you start from the state j – the first case.  

The second case says, with the probability 1, you will always reach the state k, whatever 

be the number of steps starting from the state j. So, our interest is both less than 1 as well 

as equal to 1. So, the F j k – equal to 1 that will give the probability distribution; and that 

distribution is called the first passage time distribution. So, this case is our interest and 

this will give the first passage time distribution, because whenever the system is starting 

from the state j; whatever be the number of steps; if we are reaching the state k with the 

probability 1; that means you have the whole mass is 1 and this is going to be the 

distribution of the first passage time. Using this, I am going to give the next concept 

called mean first passage time or mean recurrence time. 

(Refer Slide Time: 31:25) 

 

Mean first passage time is same as the mean recurrence time. That is defined as mu 

suffix j k. That is nothing but what is the average first passage time or average recurrence 

time. Whenever the system starts from the state j to the state k; that is, how many steps 



you have taken and what is the probability that starting from the state j to k in n steps. 

And for all possible values of n, that summation is going to give the mean first passage 

time or mean recurrence time. Then our interest will be when k equal to j; return to the 

same state so; that means f j j of n – that will give the distribution of the recurrence time 

of the state j.  

And, if F j j equal to 1, this corresponding f suffix j j n is going to be the distribution. So, 

correspondingly, F j j is going to be 1. This implies the return to the state j; whenever the 

system starts from the state j; that is certain, because that probability is 1. Whenever F j j 

is 1; that means with the probability 1, if you start from the state j, you will definitely 

come to the state j. Therefore, that is corresponding to F j j is equal to 1. And the mu j j – 

that will give what is the mean recurrence time. mu j j – the mu j j will give mean 

recurrence time for the state j. So, we are considering the second case in which F j j is 

equal to 1. So, that is nothing but the return to the state j whenever the system starts from 

the state j is certain. And the small f j j of n will give the distribution of the recurrence 

time. And our interest is also for the mean recurrence time. That can be calculating by 

using mu j j. 
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Earlier, we have given mu j j; that is same as n times f j j of n. By knowing f j j of n, we 

can find out the mean recurrence time for the state j. The same thing can be obtained by 

using another concept by introducing the random variable, that is, T suffix j; that is 



nothing but inferior of n greater than or equal to 1 such that the X n is state j given that X 

naught was state j. This is the random variable denoting the first return time to the state j. 

The first return time – time here it is the nth step. And you find out what is the first time 

you return to the state j starting from the state j reaching the state j. So, whatever be the 

first number – that integer; and that is going to be the T j; and this is going to be the 

random variable. So, using this random variable also, you can give the definition of a 

mean recurrence time. 

Now, I can define the mean recurrence time – mu j; you do not want two suffix j comma 

j; one suffix is enough. So, mu suffix j is nothing but what is the expected or expectation 

of the random variable T j. So, the T j will give the step that denotes the first return time. 

Therefore, the expected first passage time – that you can write it as the mu suffix j. So, 

this mu suffix j and mu j j – both are one of the same. And here you are finding the 

distribution. And using the distribution, you are getting. And here you are finding the 

time and finding the average time using the expectation of T j. So, in both ways, one can 

define the mean recurrence time. 
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Now, we are going for the actual classification of a state using the concept of accessible, 

communicate, closed set, then communicating class. Then we have defined a first visit; 

then we have defined the mean passage time or mean recurrence time or mean first 

passage time. So, using these concepts, we are going to classify the states. 
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The first definition is recurrence state. A state j is set to be recurrent or the other word 

called persistent if the F suffix j j equal to 1. If you recall what is F j j; F j j is the 

probability of ever enter to the state j given that it was in the state j. So, the F j j – I have 

given in the summation form of a small f j j of n using the first visit. So, if you recall, the 

F j j is nothing but what are all the possible ways the system can reach the state j as a 

first visit. You add all the combinations, all the probabilities; that is going to be the 

capital F j j. So, if capital F j j… That means the probability of returning to the same 

state j, if that probability is certain; that means if the probability is 1, then that state is 

going to be the recurrent state. 

We can classify the recurrent state into two forms: one is called null recurrent; the other 

one is called the positive recurrent based on the mean passage time value. So, based on 

the capital F j j, that is, a probability, we classify the state is going to be a recurrent state. 

Now, based on the first passage time distribution – the mean first passage time, we are 

going to classify that, recurrent state is going to be a null recurrent or positive recurrent. 

Accordingly, the mu j j – if it is a finite value, then we say that, recurrent state is going to 

be the positive recurrent state. If mu suffix j j is going to be an infinite value; that means 

on average, the first passage time is going to be infinite; then that corresponding 

recurrent state is going to be called as a null recurrent state. So, whenever any state is 

going to be called as a recurrent state, if the probability of ever entering into the state j 

starting from the state j, it is certain; or, the probability is 1, then that is a recurrent state. 



And, the recurrent state is going to be called as a null recurrent, if the mean first passage 

time or mean recurrence time or mean return time is infinity. If that is going to be a finite 

quantity, then the recurrent state is going to be called as a positive recurrent state. If any 

state is going to be a positive recurrent as well as a periodic, then that state is going to be 

called as a ergodic state. Any state is going to be called as a ergodic, whenever that state 

is a positive recurrent as well as a periodic. A periodic means the periodicity of that 

recurrent state is 1; that means the greatest common devisor of all possible steps in which 

the system coming to the same state – that value is this one. If the period is 1 and as well 

as the positive recurrent; it should be a recurrent as well as positive recurrent; that means 

the mean recurrent time is going to be a finite quantity. Then it is going to be called as a 

ergodic state. 

In a Markov chain, if all the states are going to be ergodic one; that means all the states 

are going to be positive recurrent as well as periodic, then we call that Markov chain 

itself as ergodic Markov chain; that means there is a possibility, the Markov chain may 

be irreducible; that means you will land up with only one class in which all the states are 

going to form a one close communicating class. Suppose each one state is going to be 

positive recurrent and periodic, then all other states are also going to be of the same type 

and same period. Therefore, all the states are going to be the ergodic states. Then that 

Markov chain is going to be called as an ergodic Markov chain. 
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Now, I am going to classify the state as a transient state whenever the F j j value is less 

than 1. If you recall, we have considered only two cases: whether the F j j is less than 1 

or F j j is equal to 1. Equal to 1 land up recurrent state; and F j j is less than 1 – that gives 

the transient state; that means the probability of returning to the state j starting from the 

state j is not certain; that means 1 minus of this probability with that much probability, 

the system may not return to the same state j if the system starts from the state j; that 

means with some positive probability, because 1 minus this value is less than 1. 

Therefore, 1 minus of F j j is going to be greater than 0. So, with some positive 

probability, the system may not return to the same state if it starts from the state j. Then 

that corresponding state is going to be called as a transient state. 

By seeing the one-step transition probability matrix or by seeing the state transition 

diagram of discrete-time Markov chain, you can easily come to the conclusion the state 

is going to be a recurrent state or a transition state. Whenever it is going to be a finite 

number of states, it is easy to come to the conclusion. If it is infinite number of states, 

then we need some work to be needed to come to the conclusion whether it is a positive 

recurrent or null recurrent. But easily, you can make out the given state is going to be a 

transient state. That you can make out from the state transition diagram or one-step 

transition probability matrix. 

The conclusion of the state is going to be the transient state; that can be given via the 

random variable T j also. So, the state j is transient if and only if the probability of that T 

suffix j is equal to infinity and that if this probability is strictly greater than 0. The 

probability of the mean, the probability of the system return to the first passage; the first 

passage return time – that is infinity, if that probability is greater than 0; that means there 

is a certainty over the system return to the state j with the infinite amount of time going 

to take. If that event is going to be with the positive probability, then that state is going to 

be the transient state. So, there are through two ways we can conclude the given state is 

going to be the transient state: either F j j is less than 1 or the probability of T j equal to 

infinity, which is greater than 0. 
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Based on this, I can come to the conclusion any state could be recurrent or transient; that 

means this is corresponding to F j j is less than 1 and this is corresponding to F j j is 

equal to 1. I can classify the recurrent state into two forms: either it could be a positive 

recurrent or null recurrent. Positive recurrent corresponding to the mu j or mu j j – both 

are the one of the same; that is going to be finite value. Or null recurrent is 

corresponding to mu j is equal to infinity; that means based on the mean recurrence time, 

you can conclude whether it is a positive recurrent or null recurrent.  

Again, I can classify the positive recurrent into two: one is aperiodic and other one is 

periodic. Periodic means that corresponding positive recurrent state – that period is 

greater than 1. Aperiodic means that T j is 1. So, the aperiodic – a positive recurrent state 

– that is going to be called as a ergodic state. Similarly, I can classify the null recurrent 

state into two: one is periodic and other one is aperiodic. The absorbing state is a special 

case of positive recurrent state, where the transition probability from a state to itself is 1. 

So, this is the way you can classify the state is a recurrent state or transient state, positive 

recurrent state, null recurrent state. Again, each one could be aperiodic or periodic state. 

In this lecture, we started with the few concepts of accessible, then communicate, then 

closed set. Then we have discussed communicating class. Then we have discussed what 

is the meaning of first visit. Then we have given the first passage time. Then we have 

given the mean first passage time distribution or mean recurrence time distribution. So, 



based on those concepts, we have classified the state as a recurrence state or transient 

state. So, this is related to the probability; whereas, conclusion of the positive recurrent 

or null recurrent is related to the average time. So, here only it involves the probability 

that whether (( )) certain probability, the system will come to the same state with the 

probability 1. Whereas, here there is uncertainty; the system may not come to the state j, 

if the system starts from the state j. If there is uncertainty of returning; that means with 

some positive probability, the system would not be back; then that state is going to be 

called as a transient state. So, this you can easily visualize in the state transient diagram 

of any discrete-time Markov chain. 

You can see it whether the… By seeing the state transition diagram, you can come to the 

conclusion whether the state is going to be the transient or recurrent. But through these 

diagrams, you cannot come to the conclusion whether it is going to be a positive 

recurrent or null recurrent unless otherwise you will evaluate this quantity; mu j is going 

to be n times f j j of n So, you find out that summation. So, based on the summation 

value, it is going to be a finite one or infinite one. Accordingly, that means, whether the 

mean recurrence time or mean return time or mean first passage time is going to be a 

finite quantity or infinite quantity. Accordingly, you can conclude whether that recurrent 

state is going to be a positive recurrent or null recurrent. So, here you need a 

computation. Whereas, by seeing the state transition diagram; sometime you can come to 

the conclusion whether it is a transient state or recurrent state. 

Now, the issue of periodicity; the periodicity is important to conclude whether the 

limiting distribution exist or not, whether that is going to be unique. So, you need to find 

out the aperiodic or periodic. So, if the period is going to be 1, then that state is going to 

be called as aperiodic. If the period is greater than 1, then it is a period with that integer. 

When it is going to be a null recurrent, then also we can come to the conclusion whether 

it is periodic or aperiodic. Whenever you have a Markov chain with the finite number of 

states, then it is easy to find out whether it is going to be a positive recurrent or transient.  

So, a quite good exercise is needed whenever the Markov chain have infinite number of 

states; then you need some work to be done to come to the conclusion it is a null 

recurrent and so on. In today’s lecture, with this classification, I stop here. And all the 

simple examples and the limiting distribution – that I will explain in the fourth lecture. 

Thanks. 


