
Numerical Analysis

Prof. S. Baskar

Department of Mathematics

Indian Institute of Technology-Bombay

Lecture-08

Introduction to Python Coding

Hi. In this lecture, we will quickly have an introduction to Python coding.

(Refer Slide Time: 00:23)

We will use Python language to develop codes for some numerical methods that we will

develop in our course. The first question is why Python? We have so many languages. One of

the main reasons for, why we choose Python is that it is an open source programming language

means Python is available for free. In fact, many operating systems come with Python pre-

loaded.

The second reason for, why we want Python is that it is a cross platform language, means you

develop your code in one platform say on windows and then takes the code and run it on another

operating system say Linux. You can do it without making any changes in syntax or any setting.

That is what is meant by cross platform language. In fact, it has many inbuilt libraries that make

the programming more simple.

Especially, when we are developing some complicated softwares are working on coding some

complicated scientific problems. Python is a very popular language it is used as a tool in many

famous websites. And therefore, python has a large user network; this allows us to get some

supports like whenever we have problem or doubt you can go to some discussion forum and

pose your questions.

It is very likely that you will get reply. In that way we can say that we can get free support

when working with Python. So, these are the reasons for why we preferred Python as a

programming language to learn how to code certain numerical methods.

(Refer Slide Time: 02:36)

Having said this, the next question is what is the editor that we want to use to write Python

programs and execute them? Well, there are many editors like visual studio or anaconda is

there which has a collection of editors and different Python distributions, but in our course we

prefer to use Colab. Colab is a Google product and again the question is why we want to use

Colab when we have many other editors?

One important reason is Google Colab is integrated with Google drive, means whatever

program that you write and save will be saved on your Google drive. This is very comfortable

for us. The next thing is Google Colab connects to cloud-based running time, it means when

you execute a Python code on Colab it connects to a cloud-based machine and executes your

program on the cloud machine.

This is particularly very nice, because you do not need to install any software or libraries on

your personal computer, because your code is basically going to be run on a cloud machine.

And Google Colab has almost all the commonly used libraries already installed in it. In case,

if you want to use a library which is not found on Colab you can install it on your Google drive

separately.

In that way, you do not need to install any extra software or libraries on your personal machine.

And of course since all your programs are saved on Google drive it is easy for you to share

your programs with your colleagues or friends, just like how you share Google documents.

(Refer Slide Time: 04:46)

And these are the reasons why we want to use Python as a programming language to learn

coding of some basic numerical methods and we want to use Colab as our editor.

(Refer Slide Time: 05:04)

I will not be introducing Colab, because it is very easy for you to understand how to start with

Colab and how to use Colab as an editor. You can also find many videos on YouTube to learn

Colab within 5 to 10 minutes. In fact, I have also made a short video on how to start with Colab,

you can find my video on the links shown here. I will also give this link in the description box.

With this we will directly go into the Python programming.

(Refer Slide Time: 05:43)

Well, Python is a easily readable programming language, it is not very complicated. Therefore,

I will quickly go through certain commonly used tools from Python in our course. The first

thing is how to define a variable, store a value in the variable and how to do certain arithmetic

operations and print the output? A variable x is defined here and the value 10 is stored in the

variable x. For that we have to write like this.

Similarly, y = 5 makes the Python to create a variable y and store the value 5 in that variable.

Then what we are doing is we are defining another variable c and we are storing the value of

the sum of x + y in that variable c and finally we are printing the value stored in the variable c.

Let us see how to run this program. (Video Starts: 06:57) To run the program we just have to

click this play button for the first time the Google Colab will take some time to allocate some

memory in the cloud machine.

The next time onwards it will run your code more faster. Well, it has established a connection

with the cloud machine and it run your small bit of code and it has shown the output as c = 15.

(Video Ends: 07:24)

(Refer Slide Time: 07:26)

Next, let us see how to run a loop. There are 2 ways that you can create a loop. One is using

the for loop and another one is while loop. In this program, we will see how to use for loop.

The syntax for for loop is for and then running index and its range given here. You can specify

the range in any way. In Python you have a special command called range which will create a

sequence of numbers ranging from 0, 1, 2 up to one number less than what you specify here.

This is very important to remember, it will not go up to 10 just because we give 10 here it goes

one number less than that. And then it takes the value i = 0 and then executes all the lines

written below the for loop with an indent here. You can see that there is an indent given here.

So, whatever line you write below this with an indent will be group executed under this for

loop and it will go from i = 0 till 9.

Let us run this program and see what is the output for the first for loop. Similarly, there are also

other two for loops, which we will see little later. Let us now concentrate only on the first for

loop. (Video Starts: 09:09) In fact we can comment all these lines by just selecting them and

pressing command slash. So, in Python if you type a line which starts with a hash then Python

will not execute those lines.

So, here Python will not execute all these lines. Let us run this code, where it will only run the

first for loop as we expected you can see that it starts with i = 0 and every time we are printing

the value of i. Therefore, you can see that i = 0 up to 9 only it went. That is very important as

I shown here it goes from 0 to 9 not up to 10 as we have written here. That is one thing that we

have to remember. (Video Ends: 10:07)

Next let us take another for loop where we are going from 3 to 10. Range has basically three

arguments. The first argument tells you, where your range starts and the second argument says

where it ends? Actually, it ends one number less than what you write and the third argument is

about the step in which the numbers are incremented. If you do not specify anything as a third

argument then by default range takes it as 1.

Therefore, here writing comma 1 is equivalent to not writing it at all. So, in fact you do not

need to write it at all, if it is just incremented by 1. You can see that the second for loop will

print j = 3, 4, 5 up to 9 again, because you have given 10 here therefore it goes up to 9 and what

about this? This will make the print to be j = 3 comma and then it we not go to the next line,

whereas here the outputs are printed one below the other.

Now it will be written one after the other it is something like this up to j = 9. And then this

print command will put a carriage return and comes to the next line to print and then this for

loop will take up. Now you can see that I am incrementing the range from 0 to 10 with an

increment of 2. Therefore, it will go as 0, 2, 4, 8 and then 10 it will not print, because you are

allowing it to go only up to 9. Therefore, it prints up to 8 only and comes out.

(Refer Slide Time: 12:05)

Let us run this code. The first for loop you have already seen. In the second for loop if you

recall we asked the for loop to print one after the other that is how it went and in the third for

loop we have printed k = 0, 2, 4, 6 and 8.

(Refer Slide Time: 12:21)

In the next program, we will see how to use while loop. Here, the format of the while loop is

while and then the condition under which this loop has to run that is as long as this condition

is satisfied the loop will keep on running. And then this colon is just like in the, for loop it is a

format of the while loop as well as for loop also. It indicates that the line is ending there and

then whatever is given as the indent here that will be considered as the part of the while loop.

Here, you can see that we have two lines, which are written with indent. Therefore, they are

considered as the part of the while loop. And these two lines will be executed as long as the

loop is going on and once the loop is over that is once if this condition is violated then the

control comes out of the loop and prints this line. That is what the program does. (Video Starts:

13:40)

Let us run the program and see how the output looks like. You can see that first you have taken

x = 0 and then you went into the loop first you are checking what is x value, x is surely less

than 5, therefore it incremented x by 1, what it means? It is equivalent to saying x = x + 1. And

then you are printing x, therefore the first print command will print the output as x = 1 and then

it goes back to the while loop and checks the condition x is less than 5 because the value of x

is 1.

Again, it comes and does this and gives x = 2 and it goes on up to x = 5, when it comes for 5 it

prints and goes back to the while loop, it checks whether 5 is less than 5. No. Therefore, it will

come out and then since this print command is not given with an indent. It will print not as the

part of the while loop, but it will print once it comes out of the while loop. (Video Ends: 14:54)

(Refer Slide Time: 14:58)

Now, the question is what happens if I also give an intent to this? That is, if I just put a tab and

push it inside and align with these lines, then this print will also be a part of this while loop.

(Video Starts: 15:11) Now if I run the code what happens every time it also prints that end of

loop command, because it is a part of the while loop now, but my aim is not to keep it as a part

of the while loop. So, let me remove that. (Video ends: 15:27) Let us go on with the next

program.

(Refer Slide Time: 15:34)

The next program is an illustration of the if command that is the conditional command if, else

if and else. This is very easy for you to understand. Therefore, I leave it to you to understand

this program, it is not very difficult.

(Refer Slide Time: 15:54)

The next program is an illustration of creating an array and extending the array length. Here

we have a variable A in that we want to store a vector whose components are 1, 2 and 3. So,

this can be done by creating an array. In Python arrays are called lists. And then what I want to

do is I want to make this vector bigger every time when this for loop runs. For that what you

have to do is A which is the variable name dot append that will create one more memory space

for the variable A.

And it stores the value of i in that newly created variable. That is what it does. And every time

after extending the array’s length and storing the value of i into the new extended memory it

prints the entire array A and then it does it for i = 4, 5, 6 up to 10. Let us run this code and see

how the output looks like. You can see that when the control comes for the first time into the

for loop the i value = 4, A already had 3 components.

Now, it has appended one more component in that it has stored the variable value i into it which

is 4 now, that is why you see the variable output as 1, 2, 3 and 4 and then it goes back once

again to the for loop. Now i = 5 when it comes to this line it again extends A by one more

memory and puts the value of i which is now 5 into it and then prints it. That is why you can

see you have 4 and then one more 5. Similarly, it goes on till i = 10 not 11. Again and again I

am emphasizing, because this is little confusing it goes from 4 till 10.

(Refer Slide Time: 18:14)

Well, this is how you create a one-dimensional array. We will now see the danger in equating

an array with another variable name. Let us consider this program, where I am declaring a list

or an array A = [1, 2, 3] and then what I am doing is I am equating B = A. Normally, this should

create a memory separately for the variable B and it should store the values of A into B and B

should have the same list structure as A, but it should have its own memory.

But, in Python what happens is, B will not have its own memory, but it will be mirrored with

A. And therefore, any changes you make in B will also be reflected in A and vice versa. Let us

see this by first printing the values of A and B and then go to store some value in one of the

components of either A or B and that will be automatically reflected in the other variable also.

This is the danger of creating a variable B by equating it with a list. (Video Starts: 19:51)

Let us run this program and see how the output comes. Well, you can see that A = [1, 2, 3].

And then since we have written B = A, we also got B = [1, 2, 3]. And finally I am changing the

value of A[0]. That is the first component of A is changed at this line as 100. That is correctly

incorporated in A now. You can see after changing that I am printing the value of A here and

that is correctly taking care of the change happened in the first component of A, but I never

touched B.

You see I have only created B and stored A into it, but I have never changed the value of B in

any of the three components. But, since I have changed the first component of A from 1 to 100

it got reflected in the variable B also. This is the danger of equating a list to a new variable. On

the other hand, if you just put like this and see what happens now, you can see that only A got

changed as we wanted B is never touched upon.(Video Ends: 21:22)

So, when you are defining a list and then you want to create another variable, which initializes

what is there in A then just do not put B = A, that is very dangerous, but you put B = A[:] this

is what is important when you are dealing with lists or otherwise called arrays. And now we

have understood the one-dimensional arrays and their functionality. Let us go to see how to

create and use two-dimensional arrays.

(Refer Slide Time: 22:03)

A two-dimensional array can be created like this. Now a can be viewed as a matrix, whose

elements are [[1, 2, 3], [4, 5, 6], [7,8,9]]. In order to emphasize that you do not need to give a

space between comma and the number. So, I have written the last line without the space. So,

that does not really matter. So, what I am doing here is I am basically defining two matrices A

and B and then I want to multiply these two matrices.

You do not have an inbuilt command in Python to multiply two matrices. What you can do is

you can create two nested for loops and you can directly make the multiplication formula and

get the product of two matrices or what you can do is there are some inbuilt libraries in Python;

say for matrix multiplication you can find commands in a inbuilt library called numpy.

So, how will you bring that numpy into your program? You have to first import it, this is what

we are doing in the first line. In fact you can do it anywhere before you use any command of

that library or generally it is a good practice to define all the libraries that you are going to use

in your program at the beginning of the program. So, I am just defining it at the beginning of

the program.

You can also define it at this level, because this is the first time you are using a numpy

command. So, you can also either put it here or you can put it at the beginning of the program.

So, what it does is, it imports all the commands, which are written and kept in this library called

numpy.

(Refer Slide Time: 24:18)

Then whenever you call any of it is commands, say for instance matmul, will do the matrix

multiplication of given two matrices A and B, but to execute it you have to say that this

command is sitting in the library called numpy. So, you have to type numpy dot matmul. If you

do not want to type this full name then you have to import it as something. So, what I am

choosing is I want to use instead of numpy np I want to use.

You can give any string here and then you can use that string to call the library I am using np

therefore I have to put np.matmul this is matrix multiplication of A comma B and that I am

storing in the variable C. You can also use dot for multiplying a matrix with a vector, which I

am doing here, you can see that I am multiplying the matrix A with x. Although, this x is

looking like a row vector in the dot command it will be automatically taken as a column vector.

And it gives you the correct result of A into x. So, therefore when you print this you will see

the value A into x transpose here that is why I have just printed like this.

(Refer Slide Time: 25:48)

And in fact you can extract one particular row of the matrix A by giving this command.

Remember in Python the index always starts with 0, therefore when I give the index as 1 it is

basically the second row, but not the first row. Because, first row is indexed as 0 in Python, it

is something like C program the index starts always with 0. You have to remember that that is

why I have written here print second row of A but I have given 1 here why because 0

corresponds to the first row of A, 1 corresponds to the second row of A.

Now, if I am interested in extracting a column can I put A colon 1? Well that is not possible,

because colon 1 is not going to extract a column. So, column has to be done in a rather different

way.

(Refer Slide Time: 27:00)

In order to extract a column you cannot define your matrix A in the normal list form you have

to define it as np dot array of this. So, it this is a special command, which is written and kept

in the library numpy. So, you have to use that command to declare the matrix A just to have a

different notation. Let me call this as Anp. You can see that the matrix A and Anp are

mathematically the same.

They are the same matrices, but A is defined using the usual list command of the Python,

whereas Anp is created using the command, which is kept in the numpy. Why we are doing it?

With this now you can extract a column otherwise you can only extract rows. You cannot

extract columns. Let us print Anp and now if you want to say extract the third column of the

matrix A.

Remember, I am putting 2 here, but actually it extracts the third column, because again I am

emphasizing Python will run from 0 to n- 1. Therefore 2 will correspond to the third column

and then A of colon comma 2 this will not extract the column. You can run this program and

see what is the output of this.

(Refer Slide Time: 28:51)

You can see that the column extract is possible only with np. You can see you get A is given

like this and we are asking it to extract the third column. The third column is correctly extracted

as 3, 6 and 9 with Anp. Remember this first one is Anp and whereas the second one is not

extracting the third column, but it still extracted the third row only. So, that is the main

drawback of defining a two-dimensional array directly with the inbuilt list form you have to

define a matrix always with np dot array command.

We will learn more about handling matrices, when we are doing the linear systems path. Let

us now quickly go into the next topic of doing some programs with rounding errors. Let us see

this interesting code.

(Refer Slide Time: 30:00)

The code says that I am storing the value 0.1 in x, y = 0.2 and z = 0.3. Then I am adding a = x

+ y what will be the value of a? Mathematically, a will be equal to 0.3. Then what I am doing

is I am comparing z with a. If z = a it should give me yes z = a that is what the print command

should say. Otherwise, it should say z is not equal to a. Obviously we will expect that the output

of this program should be z = a. Let us see what is the output of this program?

(Refer Slide Time: 30:53)

The program is executed and surprisingly you can see that the code has written z is not equal

to a. Why this is happening? Well, this is not the problem with Python. You write the same

code in any language that you know you can write it on Matlab or any language you will see

that the output is going to be z is not equal to a. This is because when your processor does this

computation it does not do exactly, even though the numbers are very, very small numbers and

they are nice looking numbers also.

Therefore, comparing such things when you are using non integer values are going to be very

dangerous never do like this. You should always keep a range of numbers and compare them

only within that range. You cannot do it with absolute comparison. For instance,

 if you take x, y and z as 1, 2, 3 instead of 0.1, 0.2 and 0.3 then the output will be as you expect

let us see what is the output of this program. When I take x = 1, y = 2 and z = 3.

(Refer Slide Time: 32:24)

Then it will print what you actually expect. Therefore, this simple and interesting program says

that computer even dealing with small numbers it has its very serious limitations on the

rounding errors.

(Refer Slide Time: 32:42)

Let us see this next interesting problem. I am taking x = 0.8 + 0.1 into 0.3. I am only bracketing

the sum in a different way, otherwise you can observe that x and y are going to be the same

and then I want to find x/y. So, I want to find x/y. Since, x = y this will be mathematically equal

to 1. But, since you are doing the arithmetic with real numbers they both may not have exactly

equal value.

Therefore, this may not be exactly 1 but only approximately equal to 1. Now, what I am doing?

I am subtracting 1 from x/y mathematically this should give me the value 0. And then just to

have a catchy output I am multiplying it with a big number. Now, whatever may be this big

number it is finally a finite number. Therefore 0 into a finite number should be equal to 0. So,

we expect this print command to print z = 0. Let us see what is the output of this program?

(Refer Slide Time: 34:13)

You can see that the output is significantly large number. You see we expect the output to be

equal to 0 but computer made a huge error in this simple computation and this shows how

dangerous it is for us to deal with computation especially, when we do such computations

blindly we may very likely land up with some disastrous answers. This also gives us a strong

motivation to do a deeper analysis on numerical methods that we do before going into the

implementation of those methods. We have to be very clear about how these methods are going

to work and how we implement this method on a computer.

(Refer Slide Time: 35:05)

The next is let us take this another interesting program. Let us execute this program and see

what is the output of this program? Well, as expected you can see that a and b should be

mathematically equal and that is what is also shown in this program. Now, instead of 10 to the

power of 15 let me make it as 10 to the power of 16 here and similarly here minus 10 to the

power of 16 and run this program now you can see that a is still equal to 1, but b is not equal

to 1.

What happened is 10 to the power of 16 is something, which has gone beyond the memory of

the computer and that made this huge error between a and b.

(Refer Slide Time: 36:00)

Let us try to understand this more closely. Let us take this program. I have taken e = 1021 and

we have x = 2 to the power of e. Now, I am going to increment my exponent e and every time

I am going to save x = 2 to the power of e. This 2 stars means, it is rise to the power. It is

equivalent to saying that this is nothing but 2 to the power of e mathematically. So, therefore

you have a loop running from 0 to 2 every time I am incrementing e by 1 and then rising 2 to

the power of e and saving that value into x and then I am finding y = 1 by x, z = x by x and

then printing all this. Let us see what is the output of this program.

(Refer Slide Time: 37:04)

Will the program give an error that is because you are explicitly rising 2 to the power of e,

where this e is going beyond the memory capacity. In the theory class, we have seen that this

is what we call as overflow of memory. When you are rising 2 to the power of e and the e is

going beyond the maximum memory capacity of the computer then Python is automatically

recognizing it and giving an error command.

(Refer Slide Time: 37:44)

Let us fool the Python by not putting this command, but define the same expression in a

different way that is now what I am going to do is, I am not going to increment e and then rise

2 to the power of e. What I am going to do is, I already have x = 2 to the power of e, where e

is 1021. Now, what I will do is every time I will multiply x by e. This is nothing but x = x into

e this one. Now, let us see what happens?

(Refer Slide Time: 38:25)

Now, Python will not recognize it as an error, it runs, because you are not defining it in a nice

way like 2 to the power of e. You are not doing it, with that it is able to recognize the overflow

of memory, but with this it is not able to recognize the overflow of memory. It went on and

computed it got x as infinity if you recall if the overflow of memory happens. Then the

computer processor will treat it as infinity then y = 1 by infinity, which has printed as 0.

And z is equal to infinity by infinity, which is called as not a number nan, it has printed it as

nan. From here you can see that the overflow of memory happens when the exponent is 1024.

This is 2 to the power of 1024 is the limit of the memory of the computer.

(Refer Slide Time: 39:25)

In terms of 10 it is 10 to the power of 16. In terms of 2 it is 2 to the power of 1024. So, that is

what is happening here. So, there was an overflow of memory. Similarly, you can also play

around with the underflow of memory; I will leave it to you to play around with this code. You

just write this code and test it on your computer or on any programming language. This will

happen not only with Python not only on Colab, it will happen with any programming language

on any operating system. As long as you are using a 64 bit processor, this kind of overflow and

underflow will always happen.

(Refer Slide Time: 40:10)

Finally, we will try to understand what is machine epsilon? Python always deals with it is

variable by default in the double precision; it means it gives 52 bits in the mantissa. Therefore,

in one of the problems that we have seen in the last tutorial class, if it is 52 bits it means 0 to

51 it goes. Therefore, from the 53rd digit onwards your processor will make a rounding

approximation.

It takes up to 52 digits and then from the 53rd digit onwards it makes a rounding approximation.

In the last class, we have seen that if such a thing happens then 2 to the power of minus n is the

machine epsilon. So, that is what is given here. I am taking xu = 2 to the power of -53 and xo

as 2 to the power of 53. Now, what I am doing is I am computing y as 100 into xo that is a big

number into xu + 1 - 1.

Now you see this will be understood as 1 only in the computer. And therefore you will see that

this is nothing but 1 - 1, which is equal to 0. On the other hand, if this is not there then this and

this will get canceled. You are supposed to get the value 100 as the result, but you will get the

answer as 0 for this, because of this machine epsilon calculation. Let us see the output of this

program, you can see that y = 0, whereas it is supposed to give us y = 100.

These are the limitations of the computer. This is not only for Python or Colab it is there for

any program, because this limitation is coming from the processor of your computer not from

the program path. So, these limitations have to be carefully understood while you are working

with the scientific computation. Otherwise, you may be doing entirely wrong computation

although your method mathematically may be correct.

Therefore, you have to first carefully understand all the limitations of the computer. And also

you should do the arithmetic error analysis, of course also you have to do the mathematical

error analysis coming from the method and then arithmetic error analysis has to be done. Then

you go for the programming of your method. This is the correct approach to numerical analysis.

With this let us finish this class. Thank you for your attention.

