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Hi, this is our first tutorial session. In this session we will try to solve some important problems 

given in our notes especially from the mathematical preliminaries and also from the chapter on 

arithmetic errors. 
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Let us see how to solve this problem. Here we are given that a sequence {𝑎𝑛} is going to satisfy 

some condition. What is that condition? |𝑎𝑛 − 𝐿| is less than or equal to some constant 

μ|𝑎𝑛−1 − 𝐿|. And this happens for sufficiently large N that is what the assumption says, not 

first few terms but after certain terms say for some positive integer N all the terms 𝑎𝑛’s for 𝑛 ≥

𝑁 we have this condition. 

 

And further the question also says that the constant μ is something lies between 0 and 1. That 

is very important. Now we are asked to prove that the sequence 𝑎𝑛 converges to L as n tends 

to infinity. That is what the question is. Well, let us see how to prove this result. To prove this 

result first we have to obtain this inequality. Let us see how to obtain this inequality, it is not 

very difficult. 

 



It goes with an idea which is quite often used in our course. Therefore, it is important for us to 

understand and keep this in mind, the idea goes like this. See we are given this inequality. Now 

the same inequality can also be applied to the right-hand side. For that let us take n sufficiently 

large then you can apply the same inequality for 𝑎𝑛−1 − 𝐿. That will be less than or equal to 

μ|𝑎𝑛−2 − 𝐿|. 

 

In this you have to also make sure that 𝑛 − 1 is also greater than or equal to N. that is why we 

have taken n very large when compared to N and now once you have this you can see that 

|𝑎𝑛 − 𝐿| ≤ μμ|𝑎𝑛−2 − 𝐿| and that can be written as μ2|𝑎𝑛−2 − 𝐿|. Remember, I am putting 

equal to sign here because this term that is the right-hand side term is equal to this term. 

 

It does not mean the left-hand side is equal to this. Often students get confused whether this is 

equal to this? No, this is still less than or equal to this we are writing only because the right-

hand side is equal to the second step of the right answer. And now what you can do is you can 

again apply the same inequality for now |𝑎𝑛−2 − 𝐿| and that will give us less than or equal to 

μ3|𝑎𝑛−2 − 𝐿|. 

 

Like that now you can keep on going up to what term we can go well, we are given permission 

to use this inequality only up to 𝑛 = 𝑁. Therefore, we can go only up to |𝑎𝑛 − 𝐿| here. So, 

when you go up to |𝑎𝑛 − 𝐿|  your μ will have 𝑛 − 𝑁 on the power. Therefore, this will be less 

than or equal to this. That is how we landed up with this inequality. Once you establish this 

inequality the conclusion comes almost trivially because μ is less than 1. 

 

Now you take 𝑛 → ∞ and see what happens. When you take 𝑛 → ∞ you can see that 𝑛 − 𝑁 

will also tend to infinity and that implies μ𝑛−𝑁 → 0 why since 0 < μ < 1.  Because of that we 

have this property. Now you can see that this term is going to 0 and this term is a finite quantity 

and therefore the entire term will go to 0. 

 

On the left-hand side you can see that we have taken modulus for this. Therefore, this is surely 

greater than or equal to 0. Now if you recall in the sandwich theorem if you have two sequences 

{𝑎𝑛} and {𝑐𝑛} and you know that {𝑎𝑛} ≤ {𝑏𝑛} ≤ {𝑐𝑛}. And if this goes to say 0 and this also 

goes to 0 as 𝑛 → ∞, then this will also go to 0. In the sandwich theorem we have stated it with 

any limit. 



 

Here we are using it for that limit as 0 and you see by using sandwich theorem therefore you 

can see that this term also goes to 0 as 𝑛 → ∞. That is equivalent to saying that 𝑎𝑛 → 𝐿. Now 

let us go on to the next problem. 
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The next problem is a discrete version of the second mean value theorem for integration. The 

problem says that you have a function f which is continuous on the interval [𝑎, 𝑏] and you are 

also given some n points taken from the interval [𝑎, 𝑏] and also you are given some values 

𝑔1, 𝑔2 up to 𝑔𝑛. They are given to be real numbers and more importantly they are of one sign. 

It means either everybody is positive or all these 𝑔's are negative. 

 

There is no sign change among these 𝑔's. That is what it means. Then we have to show that  

∑ 𝑓(𝑥𝑖)𝑔𝑖

𝑛

𝑖=1

= 𝑓(ξ) ∑ 𝑔𝑖

𝑛

𝑖=1

 

Where the ξ is some number lying between [𝑎, 𝑏]. That is the problem how to prove this? This 

is a very simple application of the intermediate value theorem. What you do is, just take the 

minimum over all the values of f at the points 𝑥𝑖. 

 

Call it as 𝑓(𝑥∗) and similarly take the maximum of all these numbers, call this as 𝑓(𝑥∗). Now 

what are we going to do with that? Well we have the left-hand side ∑ 𝑓(𝑥𝑖)𝑔𝑖
𝑛
𝑖=1 . Now if you 

replace all these terms by the minimum then you will have this is less than or equal to 𝑓(𝑥∗), 

it will come out of this sum because now it is independent of i, into ∑ 𝑔𝑖
𝑛
𝑖=1 . 



 

Similarly if you replace all this by the maximum then it will be less than or equal to 𝑓(𝑥∗) and 

since this is independent of i, this term will come out of each term and you will have ∑ 𝑔𝑖
𝑛
𝑖=1 . 

That is very simple to understand. 
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So, therefore we have this. 
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Remember for this we have used the fact that 𝑔 is of one sign and we assume that 𝑔 is greater 

than 0. Otherwise, if all 𝑔's are less than 0 you will have a reverse inequality. That is all. 

Otherwise the idea of the proof goes exactly same as in the case of 𝑔𝑖 's to be greater than 0. So, 

here itself we have to assume that 𝑔𝑖 's are greater than 0 and then we get this inequality. 

 



Now what we will do is, we will take these terms and define a function 𝐺(𝑥) is equal to instead 

of 𝑥∗ and 𝑓(𝑥∗) we will take it as 𝑓(𝑥) ∑ 𝑔𝑖
𝑛
𝑖=1 . You can see that 𝑔 is a continuous function 

why because f is given to be a continuous function and this is something which is a fixed 

number positive number as per our assumption. 

 

Therefore 𝐺(𝑥) is constant times a continuous function therefore G itself is a continuous 

function. Now if you recall you have a continuous function 𝑔 and you have G of say a and 

𝐺(𝑏). Then given any number between these two numbers say n, you can find the ξ such that 

𝐺(ξ) = 𝑁. That is what the intermediate value theorem says. So, we will just use this now to 

get a ξ such that. 

 

Now you see you take this as your n, 𝐺(ξ) is equal to this ∑ 𝑓(𝑥𝑖)𝑔𝑖
𝑛
𝑖=1 . So, that is what 

precisely we wanted to show that this term can be written as 𝑓(ξ) ∑ 𝑔𝑖
n
i=1 . So, that is what we 

wanted to show here and that comes directly once if you write this inequality it comes directly 

from the intermediate value theorem. Similarly, if 𝑔𝑖 < 0 then as I told the inequality will 

reverse that is all. The same idea for conclusion will go through even in this case also. 
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Let us go to the next problem. Again, this property is often used in our course especially if you 

go through the proof of Taylor's theorem and also the theorem or polynomial interpolations we 

will use this idea. What this problem says? You have a continuously differentiable function 𝑔 

and we know that the equation 𝑔(𝑥) = 0. This is the equation, it has at least n real roots. 

 



Then the equation 𝑔′(𝑥) = 0 will have at least 𝑛 − 1 real roots. This idea is used as I told in 

the proof of Taylor's theorem as well as in the proof of the error analysis of the polynomial 

interpolations. What is the idea behind this? Well, you know that the equation 𝑔(𝑥) say it has 

n roots, say for instance these are the roots of the equation 𝑔(𝑥) = 0. Let us say this is the 

graph of the function 𝑦 = 𝑔(𝑥) and you have 𝑥1, 𝑥2, 𝑥3 and 𝑥4 are the roots of this equation. 

 

Then you have to show that 𝑔′ has at least 𝑛 − 1. Say for instance if this equation that is 𝑔(𝑥) =

0 has 4 roots then 𝑔′(𝑥) = 0 should have 3 roots. How will you get? Well you use the Roll’s 

theorem. Roll’s theorem says that in between these two points you have a point ξ such that let 

us call it as ξ1 such that 𝑔′(ξ1) = 0. Similarly here also you can apply the Roll’s theorem 

between 𝑥2 and 𝑥3. 

 

And you will get say ξ2 such that 𝑔′(ξ2) = 0 and similarly here also you have ξ3 and 𝑔′(ξ3) =

0. So, that is the idea, it is just a direct application of the Roll's theorem. I hope you can write 

the solution for this problem now. 
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Well now let us pass on to the discussion on the order of convergence, if you recall we have 

introduced two notations; one is O and o. When will you say that a sequence 𝑎𝑛 = 𝑂(𝑏𝑛). If 

you recall you should be able to find a constant c and a n such that |𝑎𝑛| ≤ 𝑐|𝑏𝑛| for all 

sufficiently large Ns. So, that is what we have to show. In order to show that 𝑎𝑛 = 𝑂(𝑏𝑛). 

 



Here 𝑎𝑛 =
𝑛+1

𝑛2  and 𝑏𝑛 =
1

𝑛
. One way is to directly take this term 

𝑛+1

𝑛2  divided by 
1

𝑛
 and see that 

this is bounded. As n tends to infinity this should be a bounded quantity. This is obviously 

equal to 1 +
1

𝑛
 and that tends to 1 as i tends to infinity. Therefore, this is correct that this 

sequence is a 𝑂 (
1

𝑛
). You can also directly use the definition. 

 

In that case you have to write |
𝑛+1

𝑛2 | and that is written as |
1

𝑛
+

1

𝑛2| which is equal to 
1

𝑛
(1 +

1

𝑛
) 

and that can be written as less than or equal to 
1

𝑛
. I will just replace this by 1. I just want a 

constant here that is the idea and 𝑏𝑛 is nothing but 
1

𝑛
. Therefore, I am having already 𝑏𝑛 here, 

1

𝑛
 here. This I have to somehow freeze this n and make it a constant. 

 

For that I am dominating 
1

𝑛
 by just 1, you can dominate it by 2, 3 and so on anything any finite 

number, but I am just dominating it by 1 and that gives me 2 (
1

𝑛
). Therefore in this case my c 

is just 2 and that shows also from the definition that this sequence is a 𝑂 (
1

𝑛
). 
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Let us take the other problem. Here we have 𝑎𝑛 =
1

𝑙𝑛 𝑛
 and you want to show that this is 𝑜 (

1

𝑛
). 

Therefore 𝑏𝑛 is this. If you recall we have to here show that for every given ϵ > 0 we have to 

find a N such that |𝑎𝑛| ≤ ϵ|𝑏𝑛| for sufficiently large Ns. That is what we have to show. Now 

one way to see is to directly compute the limit and see this 
1

𝑙𝑛 𝑛

1

𝑛
=

𝑛

𝑙𝑛 𝑛
. 

 



That goes to infinity as n tends to infinity. Therefore this is actually 𝑎𝑛 is not a 𝑜 (
1

𝑛
). Now if 

you want to see it through this definition how will you see? Well we can see by contradiction. 

Assume that 
1

𝑙𝑛 𝑛
≤ ϵ

1

𝑛
 for some sufficiently large  N and for some ϵ or rather we should write 

for every ϵ because for every given ϵ  this should happen. 

 

So, for every given ϵ, I will find a n such that this happen. That is what I am assuming and I 

will show that it leads to a contradiction. How it leads to a contradiction? This implies 𝑛 ≤

ϵ ln n and that implies 
𝑛

𝑙𝑛 𝑛
≤ ϵ. Well, I can directly write it from here for all 𝑛 ≥ 𝑁. You can 

see that the right-hand side is tending to infinity as n tends to infinity. 

 

This should hold for all n sufficiently large. So, that cannot happen because this side is going 

to infinity whereas this is some very small number if I take then this cannot happen. So, that is 

a contradiction. 
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Let us now solve some problems in the chapter on arithmetic errors. Here let us take this 

problem. The problem says that we have a computing device that uses n-digit rounding binary 

floating-point arithmetic. Show that 2−𝑛 is the machine epsilon. Let us recall what is mean by 

machine epsilon. Machine epsilon means it is a very small number which we denote by 𝛿. 

 

Such that you take that 𝛿 add it with 1 and then take the floating-point approximation, whatever 

the floating-point approximation that you want to take well in this problem it is the n-digit 

rounding is the floating-point approximation. Then that delta will actually give some number 



which is greater than 1. However, if you take any number less than 𝛿, whatever may be the 

number it is. 

 

If you take any number less than the 𝛿 then the floating-point approximation in our problem 

again it is n-digit rounding should actually give 1, it should not give anything greater than 1. 

Only for 𝛿 it will give that is the last number for which it will recognize it as a non-zero number, 

anything less than that the computing device will recognize it as 0 only. That is what is called 

the machine epsilon. 
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Now let us see how to solve this problem. Well, if you see how to represent this number in the 

binary form. We can write it as .0000 up to n terms and n + first term is going to have 1 and 

then 0’s, into 21. So, if you recall its floating-point approximation is 0.1 if you write and then 

into 2𝑒. So, whatever may be the e that comes here you have to write. But I am just writing it 

in the direct form. 
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And then you can see that the 1 is sitting at the n + first position. Now any 𝛿 that you take 

which is less than 2−𝑛 will have 0 in first n + first position, even in this position it will have 0 

and then it will have 1 somewhere else. That is how 𝛿 which is less than 2−𝑛 will look like. 

Therefore, if I add 1 + that 𝛿 what I will have, well 1 can be written as 0.1 into 2 to the power 

of 1. 

 

And the 𝛿 will have first many terms 0 at least n + 1 terms are 0 and then you will have 1 

somewhere after (𝑛 + 1)th term. Now if you see this will be equal to .1 then 0, 0, many 0s at 

least n + 1 terms. That is what we know because 2−𝑛 has 1 at the n + first term. Therefore any 

𝛿 will have 0 at the n + first term at least and have 1 somewhere else into 21. 

 

Now what I will do is, I will take the floating-point approximation of this. Thereby I will do 

the rounding up to here. When I do rounding up to here that all these are zeros and the non-

zero term is actually truncated here and thereby the floating-point approximation of 1 + 𝛿  will 

remain as 1 because I have truncated up to n + first term and up to that there was no non-zero 

term in the representation of 𝛿 and therefore you have 1. 

 

That shows that 2−𝑛 is the machine epsilon for the computing device that uses n-digit rounding 

binary floating-point representation. You can also understand from here why the definition of 

machine epsilon demands that the floating-point approximation of 1 + 𝛿 should be equal to 1. 

Because if you do not have that if you just say that fl(𝛿) should be equal to 0. 

 



If you say then the floating-point representation of that will actually push that non zero one to 

the first position and thereby when you do the n-digit rounding you will not be losing that non 

zero information in the floating-point level. That is why in order to lose that information, you 

are actually adding 1 to it here and that is how this information is lost. Otherwise, this would 

have written as .1 into 2 to the power of some e. 

 

And therefore this 1 would have come to the first position and when you do the n-digit rounding 

of that you will not be losing this information. So, you are adding 1 to it and checking. That is 

the reason why we have given one in the definition of the machine epsilon here. This machine 

epsilon is a very important concept in computation one has to understand this. 
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Let us take the next problem. Here we have the number 𝑥𝐴 that is given as 3.14 and 𝑦𝐴 is given 

as 2.651. These are given to us as approximate numbers generated from some true numbers 𝑥𝑇 

and 𝑦𝑇. We do not know what are these two numbers, all we know is that we got this 

approximate numbers by using 4-digit rounding. We are not given these information 𝑦𝑇 and 

𝑥𝑇 are not given to us. 

 

We are only given that 𝑥𝐴 is obtained by rounding 4-digits from 𝑥𝑇 and similarly 𝑦𝐴 is obtained 

by doing 4-digit rounding of 𝑦𝑇. Now we want to find the smallest interval that contains this 

number and the second subdivision is we want to find the smallest interval that contains 
𝑥𝑇

𝑦𝑇
. 

Remember we do not know 𝑥𝑇 and 𝑦𝑇. Therefore, we just have to find an estimate of 𝑥𝑇 and 

𝑦𝑇 in terms of both the lower bound as well as the upper bound. 



 

So, how to get the lower bound and upper bound of 𝑥𝑇 + 𝑦𝑇? Let us see; for that first we have 

to understand what is the range for 𝑥𝑇 and what is the range for 𝑦𝑇 that is what we have to 

understand. You can see that 𝑥𝑇 can be any number greater than or equal to 3.1395. You have 

to tightly find this number that should be the smallest number which when rounded should give 

you 3.14. 

 

You can see that that is the smallest positive possible number that gives you 3.14 when rounded 

to 4-digits, 4-digits after writing the floating-point approximation. So, you have to do 4-digit 

rounding. It means 1, 2, 3, 4. This is 5, therefore it will be rounded to add 1 here and that will 

make this as 3.14. Similarly, the largest number that can lead to 3.14 is actually 3.1405. 

 

Because you can see that 3.1404 also gives us when you do 4-digit rounding it gives 3.140 then 

41, 42, 43, 44 and so on all these numbers when you round to 4-digit rounding it gives you 

3.14. Therefore, 𝑥𝑇 should be anything less than this number. That is the maximum possible 

that you can think and once you get this idea now it is very easy to solve this problem. 

 

You can see 𝑦𝑇 will lie between 2.6505 and that is less than or equal to; on the upper bound 

you have this is less than 2.6515 because 2.6514 will also give 2.6514 and 41, 42 and so on, 

any number will give this number. Once you have this now it is just a matter of adding this two 

number 𝑥𝑇 + 𝑦𝑇 and that is less than or equal to 5.792 and this is less than or equal to or 5.79 

roughly. So, that is what we get. Let us go to the next problem. 
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Next problem is to estimate 
𝑥𝑇

𝑦𝑇
. Again, we have 3.1395  ≤ 𝑥𝑇  < 3.1405 and similarly 2.6505 ≤

𝑦𝑇 < 2.6515 and that implies 
1

2.6515
<

1

𝑦𝑇
≤

1

2.6505
, I am just doing the reverse of this inequality 

and therefore 
𝑥𝑇

𝑦𝑇
<

3.1405

2.6505
 and this side it is less than 

3.1395

2.6515
. That is the answer for this problem. 
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Finally let us solve this problem where again we are not given what is the true value 𝑥𝑇, we are 

given the approximate value of 𝑥𝑇 as 2.5 with an absolute error of at most 0.01. That is what 

is given to us. Now we want to evaluate the function 𝑓(𝑥) = 𝑥3. Actually we want to evaluate 

it at 𝑥𝑇, but unfortunately we have only 𝑥𝐴. Therefore we are evaluating it at 𝑓(𝑥𝐴). 

 

Now what is the absolute error involved in 𝑓(𝑥𝐴) when compared to 𝑓(𝑥𝑇) is the question. So, 

we have to estimate 𝑓(𝑥𝑇), this is what we want to actually find but we actually found 𝑥𝐴 

because we are only given the approximate value. Now we want to find an estimate for this. 

What is mean by estimate of anything? You either have to find the upper bound. That is, you 

have to find some fixed number say K such that this is less than equal to K or it may also be 

that you have to find a lower bound say k. 

 

Such that i is less than equal to this number, but here we will only find the upper bound. What 

is given to us? Given condition is  |𝑥𝑇 − 𝑥𝐴| ≤ 0.01. That implies that −0.01 ≤ |𝑥𝑇 − 𝑥𝐴| ≤

0.01. We know 𝑥𝐴, so just substitute that you will have 2.45 ≤ 𝑥𝑇 ≤ 2.51. Therefore, we have 

an estimate for 𝑥𝑇 from here as lower bound as well as the upper bound. 

 



Now let us use the mean value theorem. That gives us |𝑓(𝑥𝑇) − 𝑓(𝑥𝐴)| which we want to find 

can be written as |𝑓′(𝜉)||𝑥𝑇 − 𝑥𝐴|. What is 𝜉? 𝜉 lies between 𝑥𝑇 and 𝑥𝐴. Now what is this? 

This is nothing but 3𝜉2 and this is 0.01, well if I have to substitute 0.01 for this, I should have 

less than or equal to. And again we know that 𝜉 lies between 𝑥𝑇 and 𝑥𝐴 and we already saw 

that 𝑥𝑇 lies between these two numbers. 

 

The maximum that it can take is 2.51. Therefore, we can roughly estimate 𝜉 to be less than or 

equal to |3 × (2.51)2| × 0.01 and that is approximately 0.189003. So, this is an approximate 

estimate for the error involved in evaluating the function 𝑓(𝑥) = 𝑥3 at the point 𝑥𝐴 when 

compared to 𝑓(𝑥𝑇). So, these are some of the important and interesting problems from our 

classes covered in week 1. With this we will finish our tutorial session 1. Thanks for your 

attention. 


