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Hi, we are discussing numerical methods for ordinary differential equations. So, far we have 

discussed numerical methods for initial value problems. In this lecture we will discuss some 

numerical methods for 2-point boundary value problems. Let us start our discussion with linear 

problems. 
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Consider the linear second order boundary value problem given by −𝑦′′ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 =

𝑓(𝑥), where 𝑝, 𝑞 and f are given continuous functions and the problem is posed on an interval 

(𝑎, 𝑏). We are also given 2 conditions now, one is at the point 𝑥 = 𝑎, at this point the function 

y takes the value 𝑦𝑎 and at the point 𝑥 = 𝑏 the function y takes the value 𝑦𝑏. 

 

And we want the solution y in such a way that it satisfies these 2 conditions at the boundaries 

of the interval, and at all the interior points it has to satisfy this second order linear ordinary 

differential equation. Since the conditions are specified at 2 different points, the problem is said 

to be a boundary value problem. As we did in the initial value problems, the first step is to get 

a discretization of the partition for the given interval [𝑎, 𝑏]. 

 



Let us partition the interval into sub intervals, with the end points as 𝑥0, 𝑥1, ⋯ , 𝑥𝑁+1, where each 

𝑥𝑗 is given by 𝑥0 + 𝑗ℎ where ℎ =
𝑏−𝑎

𝑁+1
. We will always assume that a unique solution for the 

given boundary value problem exists and it is sufficiently smooth. The first step for us to devise 

a numerical method for this problem is, to use the Taylor's theorem to approximate the 

derivative 𝑦′. 

 

You can see that we are using the central difference formula to approximate 𝑦′ therefore it is 

given by 
𝑦(𝑥𝑗+1)−𝑦(𝑥𝑗−1)

2ℎ
 and you have the remainder term, no\ow given at some point ξ𝑗 where 

ξ𝑗 lies between 𝑥𝑗−1 to 𝑥𝑗+1. Similarly, you can get an approximation for 𝑦′′ also. We will take 

again the central difference approximation for 𝑦′′.  

 

If you recall in one of our previous lectures on finite difference formulas, we have derived this 

formula using method of undetermined coefficients. We have also derived this truncation error 

there and therefore this formula is familiar to us. Now what we will do is, we will replace 𝑦′′ 

by this central difference formula and 𝑦′ by the central difference formula for 𝑦′ and thereby 

the error that we are committing is of order 2.  

 

Remember, we have already divided by h and ℎ2 for 𝑦′ and 𝑦′′ respectively. Therefore, when 

you replace the central difference formulas in the equation, you get a numerical method which 

is of order 2 now. So let us do that, when you replace 𝑦′′ and 𝑦′ by their corresponding central 

difference formulas, we get this equation. This is the central difference method for the second 

order ODE given here. 

 

Where we have replaced the central difference formula for 𝑦′′ in the first term and we have 

replaced the central difference formula for 𝑦′ in the second term and this holds for all 𝑗 =

1, 2, ⋯ , 𝑁. Here, we have used the notation 𝑦𝑗 to represent the approximate value of the solution 

at 𝑦(𝑥𝑗). As we told in the previous slide, the order of the method is 2. It is a second order 

method.  

 

Remember, we also have the boundary conditions at 𝑦(𝑎). Remember 𝑦(𝑎) is nothing but 

𝑦(𝑥0), that we have indicated by 𝑦0. Similarly, 𝑦(𝑏) = 𝑦(𝑥𝑁+1) 

  and that we use the notation 𝑦𝑁+1.  
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Therefore, we have this finite difference method together with the boundary conditions 𝑦0 = 𝑦𝑎 

and 𝑦𝑛+1 = 𝑦𝑏. Remember, we are not making any approximation at 𝑗 = 0 and 𝑗 = 𝑛 + 1. They 

are directly taken from the given boundary conditions. If there is no rounding error, these are 

exactly represented. Let us rewrite this expression in a different way. Let us collect all the terms 

of 𝑦𝑗−1 and keep them together. 

 

Similarly, all the terms of 𝑦𝑗 are gathered and kept as the second term and finally all the terms 

of 𝑦𝑗+1 are grouped and kept as the third term and of course we have the right hand side. So, we 

just rearranged the terms and we considered the finite difference method in this form.  
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Now let us see how this equation looks like, when you put 𝑗 = 1. Remember, this is the finite 

difference method that we have after rearrangement and this holds for 𝑗 = 1,2, ⋯ , 𝑁. For 𝑗 = 1, 

you can see that the first term is this, with 𝑗 = 1 here. That is what we are writing here and then 

𝑦𝑗−1 becomes 𝑦0. Similarly, the second term is the same here only thing is, now we have put 

𝑗 = 1 here and 𝑦𝑗 is now becoming 𝑦1. 

 

And similarly, the last term is the coefficient with 𝑦2. Remember 𝑝, 𝑞 and f are given functions 

in our problem therefore all these terms are known to us and also 𝑓(𝑥1) is known to us. Now 

look at the first term, the first term is appearing with 𝑦0, which is also known to us from the 

boundary condition. Therefore, the first term is fully known to us. And so, you can simply push 

the first term to the right hand side and write the equation for 𝑗 = 1 as this into 𝑦1.  

 

Remember 𝑦1 is unknown here, this is known and 𝑦2 is unknown, equal to this full term is 

known to us. thanks to the boundary condition because of that 𝑦0 is also known to us. Similarly, 

let us take 𝑗 = 𝑁 and then you write this equation. You can see that the first term is given by 

this expression into 𝑦𝑁−1 which is unknown + this expression with 𝑗 = 𝑁 into 𝑦𝑁. Again, this 

is unknown and the last term is this expression with 𝑗 = 𝑁. 

 

And now we have 𝑦𝑁+1. Again, you can observe that 𝑦𝑁+1 is the right side boundary condition 

and therefore this is also known to us. So, you can just take it to the right hand side and write 

the equation for 𝑗 = 𝑁 as the coefficient with 𝑦𝑁−1 which is unknown and then the 

corresponding coefficient with 𝑦𝑁 which is also unknown equal to the full known quantity 

where 𝑦𝑁+1 is now known to us from the right side boundary condition. 

 

Therefore, we have a set of equations like this where the first equation has 2 terms on the left 

hand side because we have pushed the first term to the right hand side because of the boundary 

condition. Similarly, the last equation has only 2 terms on the left hand side and the right hand 

side has 2 terms where this term coming from the boundary condition. All the interior points 

that is 𝑗 = 2,3, ⋯ , 𝑁 − 1, you have 3 terms for 𝑦𝑗−1, 𝑦𝑗 and 𝑦𝑗+1.  

 

So, for each j you have the diagonal term, the lower diagonal term and the upper diagonal term 

and all the coefficients are known to us.  You can see that the unknowns are 𝑦1, 𝑦2, ⋯ , 𝑦𝑁 and 

all these coefficients are known. You can observe that this forms a linear system which can be 



written as 𝐴𝒚 = 𝒃, where y is the approximate solution for our boundary value problem given 

by 𝑦1, 𝑦2, ⋯ , 𝑦𝑁. 

 

And what is this coefficient Matrix A? Well, the coefficient Matrix A is coming from these 

terms. Let us use a notation 𝐴𝑗 to denote this term, that is the lower diagonal term. Let us use 

the notation 𝐵𝑗 for the diagonal coefficient and 𝐶𝑗 for the upper diagonal coefficient. In that way 

you can see that the first equation has only 2 terms because you have pushed the boundary term 

on the right hand side. 

 

Similarly, the last equation has only 2 terms where again the boundary term from the right side 

boundary is pushed to the right hand side. All the interior equations have 3 terms, the lower 

diagonal term, diagonal term and the upper diagonal term. In that way, we got a tri diagonal 

system. If you recall, we have discussed an algorithm to solve a tri diagonal system, it is Thomas 

algorithm.  

 

You can use Thomas algorithm to obtain the solution, which is the approximate solution of your 

given linear boundary value problem. You can immediately see that you can develop a python 

code to obtain the approximate solution of the given linear boundary value problem. Once you 

are given 𝑦𝑎 , 𝑦𝑏, which are the boundary conditions, 𝑝, 𝑞 and f which are the coefficient 

functions. 

 

You can generate the elements of the Matrix A which are 𝐴𝑗 , 𝐵𝑗 and 𝐶𝑗. You can send this 

information into the subroutine for Thomas algorithm and you can get the unknown vector y 

which is the approximate solution of the linear boundary value problem. I hope you can code 

this method. 
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Just to have a clarity, let us take a very simple boundary value problem and compute the solution 

manually and see how it works. Let us take −𝑦′ + 𝑦 = −𝑥. This is our equation, we are given 

the homogeneous boundary condition 𝑦(0) = 𝑦(1) = 0. Let us take ℎ = 1/4, you can see from 

the boundary condition that we are interested in solving this problem in the interval [0,1] and 

we have taken the step size as 1/4. By this you can see that we will have a 3 × 3 tri-diagonal 

system. Here, 𝑝(𝑥) = 0, 𝑞(𝑥) = 1 and 𝑓(𝑥) = −𝑥. 

 

You can compare this equation with the given general equation of our problem. From there you 

can see this information. Once you have this information, you can go back to the definition of 

𝐴𝑗 , 𝐵𝑗 and 𝐶𝑗 and you can compute their values for each j. Since p and q are constants, you can 

see that 𝐴, 𝐵 and C are constants, that is they do not change for different j’s, only f will change 

and they are given by these values. 
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Once you have all this information, you can immediately write the tri diagonal system 𝐴𝒚 = 𝒃 

and it is given by this. In fact, you can use the Gaussian elimination method also to solve this 

system. You can see that the solution is given like this.  
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So, with this we have completed the finite difference method for linear boundary value problem. 

Let us move on to non-linear boundary value problems. Consider the non-linear boundary value 

problem 𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′). In general, f can be a non-linear function of y and 𝑦′. In which case, 

the boundary value problem will be a non-linear boundary value problem. 

 

And it is posed on the interval (a, b), with the conditions that 𝑦(𝑎) = 𝑦𝑎 and 𝑦(𝑏) = 𝑦𝑏. 𝑦𝑎 and 

𝑦𝑏 are given to us. 𝑦𝑎 and 𝑦𝑏 are some real numbers. Therefore, we have a boundary value 

problem again. Now it is a non-linear boundary value problem. You can also apply the finite 



difference method, that we have discussed in the previous section. But in that case, you may 

land up with a non-linear system of equations, for which you may have to use the Newton's 

method, that we discussed in the non-linear chapter. 

 

But here we will use another interesting method, called Shooting method. Before getting into 

the method, let us quickly see the existence and uniqueness theorem of this non-linear boundary 

value problem. We will only state the theorem but the proof of this theorem is not the subject 

of numerical analysis. Let f be a continuous function defined on the domain 𝐷 = {(𝑥, 𝑦, 𝑧)| 𝑥 ∈

[𝑎, 𝑏] , 𝑦, 𝑧, ∈ ℝ}. 

 

We assume that the partial derivative of f with respect to y and z be continuous on the domain 

D. And further, if 𝑓𝑦(𝑥, 𝑦, 𝑧) is positive for all (𝑥, 𝑦, 𝑧) ∈ 𝐷 and 𝑓𝑧(𝑥, 𝑦, 𝑧) is bounded in the 

domain D then a unique solution for the given boundary value problem exists. Therefore, when 

we devise the numerical method, we have to make sure that all these conditions are satisfied by 

the right hand side function that we are considering. 

 

Otherwise, what happens is you may be devising a numerical method for which there may not 

be any solution. In order to avoid such a situation, it is more safe for us to work one with those 

functions f that satisfies all this hypothesis. Anyway, this is just a mathematical remark. 
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Let us go to the method that we are interested in, it is called the Shooting method. Main idea of 

the Shooting method is, to first choose some η, you may choose it arbitrarily and consider the 

initial value problem 𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′) posed on the interval (𝑎, 𝑏). Remember that, this is the 



same as the equation that you have in your original boundary value problem and now you have 

initial conditions. 

 

One initial condition is the same, as it is given in your original problem, that is 𝑦(𝑎) = 𝑦𝑎. 

Therefore, you are having the left boundary condition from your boundary value problem fixed 

as the condition at 𝑥 = 𝑎 in your initial value problem also. Now you have one more condition 

because you have second order equation. Therefore, you need 2 conditions in order to have a 

unique solution. 

 

For that reason, you need one more condition in our original problem. We have specified that 

additional condition at the point b, therefore it became a boundary value problem. Now we are 

fixing that additional condition at the point 𝑥 = 𝑎 itself. But now, we are specifying the 

condition at 𝑦′ and we take 𝑦′(𝑎) = η. Remember η is something that we arbitrarily choose and 

then fix it here.  

 

Now if you can solve this initial value problem and get the solution, then we will denote that 

solution as 𝑦(𝑥; η), where η is the parameter and x is the independent variable in your problem. 

An interesting observation here is, to see that if you chose η in such a way that 𝑦(𝑏; η) = 𝑦𝑏 

then that y will also be the solution of your boundary value problem. Why? Because your y 

already satisfies your equation and also it satisfies the left side condition 𝑦(𝑎) = 𝑦𝑎.  

 

Now if you have chosen your η such that 𝑦(𝑏; η) = 𝑦𝑏, then you are completely done with your 

boundary value problem solution also. But we really do not know what is that η which gives 

you the solution y such that 𝑦(𝑏; η) = 𝑦𝑏. We really do not know this, therefore in general, this 

will define a non-linear equation whose solution is precisely the η for which you have 𝑦(𝑏; η) =

𝑦𝑏.  

 

So, the idea is to choose an η, solve this initial value problem, get the solution y and then plug 

in that y into this equation and solve this non-linear problem to get the η. Remember this is the 

equation with variable as η therefore its root will precisely be the value of η at which 𝑦(𝑏; η) =

𝑦𝑏. So, how are we going to achieve this? Well, you can use any non-linear iterative method 

that we have introduced in one of our previous chapters to solve this non-linear equation. 

 



In our case, we will use the Secant method but before showing you how to set up the Secant 

method, let us first worry about how to solve this initial value problem and get this solution. 

Because unless you get the solution, you cannot go to set up the Secant method to solve this 

non-linear problem. Therefore, let us first go to solve this initial value problem. 
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Well, you can solve this initial value problem in 2 ways. One is, you can replace 𝑦′′ by the 

central difference formula and replace 𝑦′ by again its corresponding central difference formula 

but that may give you a system of non-linear equations. Therefore, another nice way to get the 

solution of the second order initial value problem is, to convert the second order equation to a 

system of first order equation. 

 

How can you do that? If you would have done a basic course in ODE, you would have learned 

that any higher order equation can be converted to a system of first order equations. Here you 

have second order equation therefore, when you convert it to a first order equation, you will get 

2 first order equations. The idea is very simple even if you have not done a course on ODE. It 

is not very difficult for you to understand this. 

 

What you do is, first you define a function z which is equal to 𝑦′. Once you have this then what 

is 𝑧′? 𝑧′ is nothing but 𝑦′′ and 𝑦′′ is from your original equation is given by 𝑓(𝑥, 𝑦, 𝑦′). That is 

what we are writing here, 𝑧′, which is actually equal to 𝑦′′, = 𝑓(𝑥, 𝑦, 𝑧), instead of 𝑦′ we will 

put this z here. In that way, you have cleverly eliminated 𝑦′′ and got this system of 2 equations, 

that involves only the first order derivative of the unknown variable.  

 



Now instead of posing the second order equation on the interval [𝑎, 𝑏], now we will pose this 

system of first order equations on the interval [𝑎, 𝑏] with the same initial condition, 𝑦(𝑎) = 𝑦𝑎 

and instead of 𝑦′(𝑎), now we will put 𝑧(𝑎) because that is the notation we are using here. 

Therefore, it is 𝑧(𝑎) = η. Now you can see that you have 2 first order equations. You can use 

any numerical method that we have developed for first order initial value problem.  

 

Now you see, we have a system of first order equation with initial condition. Recall, we have 

developed many methods to approximate solution of a first order initial value problem. You can 

use any of those methods, like forward Euler method or Runge-Kutta method or any other multi-

step implicit or explicit methods to approximate solution of this system of first order equations. 

Only thing is, you have to apply that method twice. 

 

One for the first equation and another for the second equation. To illustrate that, we will consider 

this simplest possible method that is the forward Euler's method and see how to implement the 

forward Euler method for this system of first order equations. There is nothing difficult here, 

you just have to apply the forward Euler method individually to both this equation. Choose ℎ =

𝑏−𝑎

𝑁
 and consider for 𝑗 = 0,1,2, ⋯ , 𝑁 − 1. 

 

The Euler forward method for the first equation, which is given by 𝑦𝑗+1 = 𝑦𝑗 + ℎ𝑧𝑗  and 

similarly you have the forward Euler method for the second equation given by 𝑧𝑗+1 = 𝑧𝑗 +

ℎ𝑓(𝑥𝑗 , 𝑦𝑗 , 𝑧). Now you will see, starting from 𝑗 = 0, you can go up to 𝑗 = 𝑁 − 1. At 𝑗 = 𝑁 − 1, 

you have 𝑦𝑁, that is precisely the approximation for 𝑦(𝑏′η) for a given η.  

 

So, that is approximately equal to 𝑦𝑁 that you obtained using the Euler method. So, to obtain 

that you also need to find 𝑧𝑗+1 for every j because it is a coupled system. So, once you have 𝑦𝑁, 

let us denote it by 𝑦𝑁,η because we are choosing an η and then setting up this Euler method and 

computing 𝑦𝑁. Therefore, your 𝑦𝑁 will surely depend on the choice of η that you have taken at 

the beginning of this problem. Therefore, we will use the notation 𝑦𝑁,η.  

 

Now once for given η, you know how to get 𝑦𝑁,η. Now, we want that η for which 𝑦𝑁,η = 𝑦𝑏. 

So that is what ultimately we want to have, but unfortunately we do not know that value of η. 

Now how to get that? We will try to capture that η through an iteration. We will use secant 



method to solve this non-linear equation by replacing 𝑦(𝑏; η), which is the exact solution of this 

system, now by the approximate solution 𝑦𝑁,η.  
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Now we have gathered all the information to set up the secant method. Let us now write the 

algorithm in a systematic way and call it as the Shooting method. Remember we are given a 

non-linear boundary value problem. What is that problem? That problem is here, once you are 

given the non-linear boundary value problem, you first have to set up an initial value problem, 

for that you will choose an η.  

 

Now remember, we want to use secant method. In secant method, you need 2 initial guesses. 

Therefore, we will choose η0 and η1, two initial guesses for this secant method. For η0, we will 

first solve the initial value problem, that is this initial value problem with η = η0. How we are 

doing it? We are first converting it to a system of first order ODE and then using the forward 

Euler method to get 𝑦𝑛,η0
. 

 

Similarly, you give η = η1. Correspondingly, you set up the initial value problem for the first 

order system. Use forward Euler method to get 𝑦𝑁,η1
. So, therefore once you choose η0 and η1, 

you can get 𝑦𝑁,η0
 and 𝑦𝑁,η1

. These are the approximations of the solution of your initial value 

problem with η0 and η1 as parameters. Once you have these 2 values, you are now ready to set 

up the secant method.  

 



Remember, you have to apply the secant method for the non-linear equation 𝑦(𝑏; η) − yb = 0. 

Only thing is, instead of exact solution coming from your initial value problem, now you will 

plug in these approximate solutions. Thereby, you are supposed to set up this as the iterative 

formula coming from the secant method applied to this equation. 

 

You should go back to our non-linear equations chapter. Recall the formula for secant method 

for a given non-linear equation and come back and see this is the formula. Here,  𝑓(η) is given 

by this. Now what you will do is, instead of using the exact value, now you will use the 

approximate value that is 𝑦𝑁,η, computed using the Euler method. Similarly, you can also apply 

Runge-Kutta method or any other method, trapezoidal method or any predictor corrector 

method. 

 

Anything you can use to approximate these solutions here. To have simplicity, we have used 

forward Euler method and similarly you also have 𝑦𝑁,η0
 and you can plug in these values into 

the secant method formula and get η2. Now once you have η2, again you set up the initial value 

problem, that is you go back to the step 2, you set up the initial value problem here.  

 

Now with η2 and again you do this process get 𝑦𝑁,η2
. 𝑂nce you have 𝑦𝑁,η2

, you can use these 2 

values to get η3 from the secant method and like that you can keep on iterating ηs. And if this 

sequence converges, you will eventually get that η for which 𝑦(𝑏; η) = yb. So, that is the idea 

of the Shooting method. 
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Let us illustrate the Shooting method with this simple non-linear ODE. We have 𝑦′′ = −(𝑦′)2. 

It is a non-linear ODE and we are given the boundary conditions as 𝑦(0) = 0 and 𝑦(1) = 1. 

Let us take ℎ = 0.5 because we are going to do the computation manually. Therefore, it is better 

to take some big head h. So, that there is no much computation involved. To start with, we have 

to choose 2 initial guesses η0 and η1, you can choose them arbitrarily. 

 

Here I have chosen them as η0 = 1 and η1 = 1.5. The first step is to take η0 and use the 

numerical method to solve the initial value problem. We decided to take Euler method, that is 

forward Euler method, therefore we will apply the forward Euler method to the initial value 

problem. With initial condition as 𝑦0 = 0, that is given here, and 𝑦′(0) that is now 𝑧0. 

 

Because in our initial value problem, we have taken 𝑧 = 𝑦′, that is why 𝑧0 = 𝑦′(0) and that we 

will take as η0, the parameter that we have chosen. So, once you have this initial value problem, 

you will go to apply the Euler method component wise, that is for the equation 𝑦′ = 𝑧. That 

gives you 𝑦1 and then you apply the Euler method to the second component that is 𝑧′ =

𝑓(𝑥, 𝑦, 𝑧). 

 

And that gives you 𝑧1 for the first step. Now once you have the first step you have to go for the 

second step that is 𝑗 = 0 gives you this. Remember 𝑦1 is the approximate solution for 

𝑦(𝑥0 + ℎ), that is 𝑦 of, 𝑥0 is zero, therefore 0 + h is 0.5. Therefore, it is 0.5. This 𝑦1 is the 

approximation of 𝑦(0.05). Similarly, you need to have 𝑦2 which is an approximation for 𝑦(1) 

and that is the right hand side boundary. 

 

Therefore with this h, you just have to go 2 steps in the Euler method. 𝑦2 is given by 0.75, you 

can check that and that is precisely what you want to have as the value for the right side 

boundary with η0 as the parameter right. Well, you may have to also find 𝑧2 but that is not 

required because for our Shooting method we only want this value. Once you have this value, 

you do not need to find 𝑧2 but you need to find 𝑧1 because that is plugged in the expression for 

𝑦2. 

 

Therefore, you need to find 𝑧1. Once you have 𝑧1, you can compute 𝑦2.  Once you have 𝑦2, your 

purpose is achieved for this particular η0. Therefore, you need not compute 𝑧2. Now let us take 

η1. Remember we have already computed 𝑦2,η0
 corresponding to η0. Now we have to find 𝑦2,η1

, 



corresponding to the parameter η1. For that, again we will apply the Euler method with the 

initial condition as 𝑦0 = 0 and 𝑧0 = η1. 

 

You can again find 𝑦1, 𝑧1, plug in 𝑦1 and 𝑧1 into 𝑦2 and get 𝑦2 as this and denote it by 𝑦2,η1
. 

Remember, you already got 𝑦2,η0
. Now you got 𝑦2,η1

, therefore you are now ready to apply the 

secant method to get η2. And that is given by this formula and when you plug in all these values 

into η2, remember, we have 𝑦2,η0
− yb. What is 𝑦𝑏? 𝑦𝑏 is 1, that is why we have here 𝑦2,η1

− 1 

and similarly 𝑦2,η0
− 1 here and that reduces to this value and that is your η2. 

 

Once you have η2, again you go back to the Euler method with η2 and compute 𝑦1, 𝑧1 and then 

𝑦2 corresponding to η2. Once you have 𝑦2,η2
, you can come to compute η3 which is equal to 

η2 − (y2,η2
− 1)

η2−η1

(y2,η2−1)−(y2,η1−1)
. So, that will give you η3. Again, once you have η3, you will 

then go to the Euler method to compute 𝑦2,η3
. Like that the iteration will keep on going. 

 

It may be little confusing but you have to carefully understand it. Once you understand, it is 

very clear how the iteration goes. First set up the initial value problem and then solve that initial 

value problem using Euler method or any other method. For setting up the initial value problem, 

you need to choose the η first time, η0 and η1 and once you have the corresponding y values on 

the boundary then you will come back to the secant method and get the next iteration for η. 

 

Like that the iterative sequence will go and if the secant method iteration converges then this η 

which comes as the limit of the sequence will be the η for which you have 𝑦𝑁,η = yb.  

(Refer Slide Time: 41:31) 



 

So, let us see how this solution looks like. For η2, you have 𝑦1 is equal to this value, 𝑧1 is equal 

to this value and once you have 𝑦1 and 𝑧1,you will plug in to 𝑦2 to get 𝑦2,η2
. Once you have 

𝑦2,η2
, you can go to compute η3 and the iteration goes on like this. 

(Refer Slide Time: 42:09) 

 

Let us see how the graph of the solution looks like. Here the red line represents the exact solution 

of the given boundary value problem and the blue line gives the approximate solution for each 

η computed using the Euler method. The first line corresponds to η0 and for that 𝑦2,η0
 is roughly 

0.75 and this is the solution computed for η1. Remember, you have 𝑦0, 𝑦1 and 𝑦2, which we 

denote by 𝑦2,η1
. 

 

Similarly for the η2, you have this graph and this is the solution obtained using the Shooting 

method. You can see that as you go on with η in the secant method, your 𝑦2,η is going more and 



more closer to the exact boundary condition, this is 𝑦𝑏 for you. Remember, you have taken 𝑦𝑏 

as 1 right. So, it is trying to approach this condition, of course the solution otherwise is not. So, 

good because we have taken ℎ = 0.5.  If you take h to be something more smaller say 0.05 and 

all the approximation will be better. 

 

But we cannot do it manually. You can develop a python code and compute the solution for 

smaller values of h. Here, I will show you the solution computed using the Shooting method 

with ℎ = 0.05.  You can see that η0 we have taken as one as usual and η1 is taken as 1.5. For 

η0, the solution is this and you have 𝑦2,η0
 is something approximately 0.69. 

 

And this is the graph corresponding to η1 and that is giving us the boundary condition as 𝑦2,η1
, 

which is approximately 0.92 and this blue line corresponds to η2 and that gives us the boundary 

condition as 𝑦2,η2
 is almost 0.99. You can see if you take η3, η4 and all, it will try to approach 

the exact boundary point which is 𝑦𝑏 = 1. So, this is how the Shooting method works. It may 

be little confusing but if you carefully understand, it is not very difficult for you to code it. 

 

Given that we have already learned the coding for Euler method in the last class, you can now 

combine the Euler method and the secant method and I hope you can develop a python code for 

the Shooting method also. With this note let us end this lecture. Thank you for your attention.  

 


