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Hi, we are learning numerical methods for first order initial value problems. In this, we have 

learned Euler method and Runge-Kutta method. In this class, we will introduce 2 methods, one 

is midpoint method and another one is trapezoidal method. We will use a different idea to derive 

these 2 methods. We will first write the initial value problem in the form of an equivalent 

integral equation and then use quadrature formulas to approximate the integrals, appearing in 

this equation to get these 2 methods. 

 

One is a two-step method and another one is an implicit method. Let us go to derive these 2 

methods.  
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Recall, that the initial value problem that we are interested in, is given by 𝑦′ = 𝑓(𝑥, 𝑦) and this 

equation is posed on a closed and bounded interval [𝑎, 𝑏] and we are also provided with an 

initial condition 𝑦(𝑥0) = 𝑦0 where 𝑥0 is a point in the interval [𝑎, 𝑏]. Often, we take 𝑥0 = 𝑎 

just for the sake of simplicity. Recall, we have derived the forward Euler method in one of our 

previous lectures, where we have approximated the derivative 𝑦′ in our equation using forward 

difference formula. 

 



And thereby, we got the formula for the forward Euler method as 𝑦𝑗+1 = 𝑦𝑗 + ℎ𝑓(𝑥𝑗 , 𝑦𝑗). Here, 

you can see that in order to get 𝑦𝑗+1, we just need to know the value of y at the previous node, 

that is at 𝑥𝑗. So, in that way this method is a one step method and also you can see that 𝑦𝑗+1 is 

obtained fully from 𝑥𝑗 and 𝑦𝑗, which are known to us. In that way, this formula is an explicit 

formula for 𝑦𝑗+1. 

 

And that is why, we say that the forward Euler method is an explicit method. We have obtained 

this formula by approximating 𝑦′ by the forward difference formula.  
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Now, we can also get the same formula using another approach. Here what we will do is, we 

will write the given equation in the equivalent integral form. How are we getting this? Well, we 

have 𝑦′ = 𝑓(𝑥, 𝑦). Now you integrate it from 𝑥𝑗 to 𝑥𝑗+1, the same has to be done on the right 

hand side also, 𝑥𝑗 to 𝑥𝑗+1 ds. So, let us write it as s ds and this is ds. Now here you can see that 

the integral becomes 𝑦(𝑥𝑗+1) − 𝑦(𝑥𝑗), which I will take on the other side 𝑦(𝑥𝑗) +

∫ 𝑓(𝑠, 𝑦(𝑠))𝑑𝑠
𝑥𝑗+1

𝑥𝑗
. 

 

So, that is what we are writing here. So, this equation can be equivalently written in this form. 

We are just using the fundamental theorem of calculus, for that you have to, of course, assume 

that f is a continuous function. With all these nice assumptions, you can see that the given ODE 

is equivalent to this integral form of the equation. Remember, this is not a formula but it is an 

equation because you have y on the left hand side, which is unknown and that is evaluated in 

terms of again y, which is sitting in the integrand here. 



 

Therefore, it is an integral equation and it has to be solved in order to get y. Now we know that 

there are some integrands f for which we do not know how to perform this integral explicitly. 

In which case, you can approximate this integral by a quadrature formula. So, that is the idea. 

Now what we are claiming is that there is a quadrature formula for which we will get the forward 

Euler method. 

 

The question is, what is that quadrature formula, when I replace this integral by that quadrature 

formula, leads to forward Euler method. Let us see, if you recall we had studied a rule called 

rectangle rule. So, what it says, ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= (𝑏 − 𝑎)𝑓(𝑎). So, that is what we are going to use 

here,  ∫ 𝑓(𝑠, 𝑦(𝑠))𝑑𝑠
𝑥𝑗+1

𝑥𝑗
= (𝑥𝑗+1 − 𝑥𝑗)𝑓(𝑥𝑗 , 𝑦𝑗), that is the value of the function f evaluated at 

the lower limit of the integral, and we know that this is nothing but h. 

 

Therefore, this can be written as ℎ𝑓(𝑥𝑗 , 𝑦𝑗). Now you replace this integral by the rectangle rule 

and thereby you get 𝑦𝑗+1. Remember, since I put an approximate expression for this, I will not 

use the notation 𝑦(𝑥𝑗) because this is used to indicate the exact solution. So, I will use this 

notation to indicate the corresponding approximation to the exact solution and that is given by 

𝑦𝑗 which is an approximation to 𝑦(𝑥𝑗) + this integral is now replaced by the rectangle rule and 

that is precisely the forward Euler method.  

 

So, the forward Euler method which we derived by replacing 𝑦′ by the forward difference 

formula, can also be obtained by replacing the rectangle rule in the equivalent integral equation. 

Now from here, we get lot of ideas because why only rectangle rule, we can also replace this 

integral by midpoint rule, trapezoidal rule, even Simpson’s rule and Gaussian quadrature rule.  

 

So, we have many formulas from which we have scope to get many methods, this is what is the 

interest for us in this lecture. 
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As the first step, let us consider the integral form of the ODE here but there is a slight difference 

in the way I have taken these limits. I have taken the limits as 𝑥𝑗−1 to 𝑥𝑗+1. Remember, how you 

will write this integral equation is up to you. You just have to integrate 𝑦′(𝑠)𝑑𝑠 = 

∫ 𝑓(𝑠, 𝑦𝑠(𝑠))𝑑𝑠
𝑥𝑗+1

𝑥𝑗−1
 and then take any limit. So, it is not necessary that you have to take 𝑥𝑗 to 

𝑥𝑗+1, you can also take 𝑥𝑗−1 to 𝑥𝑗+1 like that you can take the integral over any interval. 

 

But only thing is you have to take the same integral on the right hand side also. So, that is what 

I am doing here; why am I doing here with a different limit, because I want to. Now apply the 

midpoint rule. If you recall, midpoint rule is given by ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is actually (𝑏 − 𝑎)𝑓 (

𝑏+𝑎

2
), f 

evaluated at the midpoint of the interval that is 
𝑏+𝑎

2
. Now, when I want to apply this midpoint 

rule to this integrand, I have to evaluate this integral at the midpoint of the interval on which 

you are taking this integral. 

 

And that midpoint should coincide with one of your grid points, that you have generated in your 

problem. That is why, I have taken the limit as 𝑥𝑗−1 to 𝑥𝑗+1. So, that 𝑥𝑗 is the midpoint of this 

interval. Remember, we always work with equally spaced nodes. Again, this is only for the 

convenience but here we are crucially using it. And that will make the evaluation of this 

quadrature rule exactly at the node point 𝑥𝑗, for that reason we have chosen this. 

 

You have to choose similarly, for Simpson’s rule also. Because Simpson’s rule also evaluates 

the value of the function at the midpoint of the interval. So, in such cases you have to make sure 



that all the points where you are evaluating the function should be the grid points of your 

problem.  
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Once you have this, now it is very easy for you to apply the midpoint quadrature rule for the 

integral and that is given by this, which is nothing but 2ℎ 𝑓(𝑥𝑗 , 𝑦𝑗). So, when you apply this 

quadrature rule into this equation, you get the formula 𝑦𝑗+1 = 𝑦𝑗−1 + 2ℎ𝑓(𝑥𝑗 , 𝑦𝑗), that is why 

you have 2h here, because you have applied the quadrature formula in the interval 𝑥𝑗−1 to 𝑥𝑗+1. 

You have chosen a wider interval in order to fit this function evaluation exactly at a grid point.  

 

So, this is the idea of midpoint rule. We have the midpoint method for our initial value problem 

and we have the following important observations about this midpoint method. What are they? 

The first observation is that, to compute the value of 𝑦𝑗+1, we need to know the value of 𝑦𝑗 and 

not only that, it also depends on the value at 𝑥𝑗−1. Therefore, 𝑦𝑗+1 depends on the value of y at 

2 grid points one is at 𝑥𝑗 and another is 𝑥𝑗−1, that is the first observation.  

 

Now when you go to find 𝑦1, how will I get it? Well, put 𝑗 = 0 to get 𝑦1, that will make the first 

term here as 𝑦−1, what is that, it is nothing but y evaluated at 𝑥0 − ℎ. But if you recall, we have 

posed the problem only in the interval [𝑥0, 𝑏]. We do not care about 𝑥0 − ℎ, it is outside our 

domain. Therefore, we do not know whether the solution exists at this point or not. Even if it 

exists, we have no interest to calculate the value of y at this point.  

 



So, we cannot go to use the value at this point, that makes the method to be not applicable for 

𝑗 = 0. In that case, therefore, you have to compute 𝑦1 using some one step method, something 

like forward Euler method. Once you have 𝑦1 from some other method then we can use 𝑦0 and 

𝑦1 to obtain 𝑦2 using the midpoint Rule and similarly you can use 𝑦1 and 𝑦2 to get 𝑦3 from the 

midpoint method and so on.  

 

So, you can apply the midpoint rule only for obtaining 𝑦𝑗 for 𝑗 = 2,3, ⋯, whereas 𝑦1 has to be 

obtained from some one step method like forward Euler method. Such a method is called a two-

step method because to find 𝑦𝑗+1, you need to know the value of the solution at 2 previous 

nodes, here it is 𝑦𝑗 and 𝑦𝑗−1.  
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Let us take an example where we have the initial value problem as 𝑦′ = 𝑦 and 𝑦(0) = 1. Our 

aim is to obtain an approximate value of 𝑦(0.04) with the step size ℎ = 0.01. As we have 

already observed, we have to use some one step method to obtain 𝑦1 here. We use the Euler 

forward formula and get the approximate value at the point 𝑦(0.01) as 1.01 and is denoted by 

𝑦1.  

 

So, we got the value of 𝑦1 from forward Euler method. Now to get 𝑦2, we can go for the 

midpoint method. 𝑦2 is from the midpoint method given by 𝑦0 + 2ℎ 𝑦1and we know all the 

values. Therefore, we can plug in all these values and get the approximate value of 𝑦(0.02) and 

it is given by 1.0202 here. Similarly, you can also get 𝑦3, 𝑦3 is the approximation to 𝑦(0.03) 

and it involves the values of 𝑦1, which we have already computed from the Euler method. 



 

And it also involves the value of 𝑦2, which we have computed from the midpoint rule from here. 

So, you can plug in those values and get the value of 𝑦3 which is approximately 1.0304. 

Similarly, you can get 𝑦4, which is the approximation of what we want. So, we want 𝑦(0.04) 

and that is now given by approximately 1.04081. Now let us see what is the exact value of the 

solution 𝑦(0.04). 

 

You can clearly see that the exact solution is given by 𝑦(𝑥) = 𝑒𝑥. From there you can compute 

the exact value of the solution and that may be taken approximately as 1.040811. So, that is 

pretty close to what we have obtained. Also, you can see that we have obtained the approximate 

solution up to six digits rounding. With respect to this exact value, the error is given by this, 

which is pretty small. 

 

If you recall, we have also obtained an approximate solution for this initial value problem using 

forward Euler method and for the same value of h that is ℎ = 0.01. We got the error from the 

forward Euler method as this value. From here you can see that at least in this example, the 

midpoint method performs better than the forward Euler method.  
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So far, we have only derived explicit methods, where the unknown 𝑦𝑗+1 is obtained as a solution 

of 𝑦𝑗 and 𝑦𝑗−1, which are already computed when we go to compute 𝑦𝑗+1. In that way the 

methods, that we have derived so far are explicit methods. There are also other cases, where the 

unknown 𝑦𝑗+1 is obtained as an implicit relation involving known and unknown quantities, such 

methods are called implicit methods. 



 

Let us illustrate such a method by putting the trapezoidal rule to the integral equation. Just recall 

that the trapezoidal rule for this integral is given by (𝑏 − 𝑎) which is 𝑥𝑗+1 − 𝑥𝑗 by 2 into 𝑓(𝑏) 

that is, 𝑓(𝑥𝑗+1, 𝑦𝑗+1) + 𝑓(𝑎) which is 𝑓(𝑥𝑗 , 𝑦𝑗). So, we just have to replace this integral by the 

trapezoidal rule and we get 𝑦𝑗+1 = 𝑦𝑗 + ℎ(𝑗 + 1) − ℎ𝑗 which is precisely h for us, divided by 

2 into 𝑓(𝑎 + +𝑓(𝑏), this relation is called the trapezoidal method. 

 

Here you can see that we obtained a relation for 𝑦𝑗+1 and it is implicitly represented because to 

get 𝑦𝑗+1, we again need to know 𝑦𝑗+1 on the right hand side also. If you recall, both in the 

midpoint rule as well as in the forward Euler method, we obtained 𝑦𝑗+1 purely in terms of the 

known quantities. whereas in the present case, we only have an implicit relation and for this 

reason this method is called an implicit method. 
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Note that the trapezoidal method can be explicit, if the function f is linear in y. Let us see this 

by an example. Consider the initial value problem 𝑦′ = 𝑥𝑦 and the initial condition is given by 

𝑦(0) = 1. Here you can see 𝑓(𝑥, 𝑦) = 𝑥𝑦 and you can see that f is linear in y. Let us take ℎ =

0.2, that is not very important for us now. We will apply the trapezoidal method to this initial 

value problem and see that we get an explicit relation just because f is a linear function in y. 

 

Let us see how it goes. Recall, the trapezoidal rule for this initial value problem is 𝑦𝑗+1 = 𝑦𝑗 +

ℎ

2
(𝑥𝑗𝑦𝑗 + 𝑥𝑗+1𝑦𝑗+1). Of course, we have 𝑦𝑗+1 appearing on the right hand side but what you can 

do is, you can take it to the left hand side and then you can easily solve for 𝑦𝑗+1. So, that is what 



we do here, for instance, 𝑦1 is given like this and when you plug in all the known quantities 

here, we have this expression where 𝑦1 is again not known to us.  

 

But that does not matter. You can take this 𝑦1 to the other side and get an explicit relation for 

𝑦1 like this and that immediately gives you the value of 𝑦1 as well. So, therefore as long as the 

right hand side function f depends linearly on y, you can still use the trapezoidal rule just like 

the explicit method. 

 

In fact, you can also get 𝑦2 very easily. Again 𝑦2 will be given in terms of 𝑦2 again but that is 

again appearing linearly therefore you can solve it to get 𝑦2 and that value is given by 1.0842.  
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Now the question is, how to solve this in general? Trapezoidal rule gives a non-linear equation 

for each 𝑦𝑗+1. Let us see this by another example. Now, let us take the initial value problem 

𝑦′ = 𝑒−𝑦 with the initial guess as 𝑦(0) = 1. In this case, 𝑦1 is given by this expression, where 

the right hand side also involves 𝑦1 but now it depends on 𝑦1 in non-linear way. Now it involves 

𝑦1 in terms of the exponential function.  

 

Now it is not very easy for us to solve this equation to get 𝑦1. Now the question is how to solve 

this non-linear equation at every grid point. There are 2 ways that we can handle this problem. 

One is to use some non-linear iterative method. Let us first consider the non-linear equation. 

The non-linear equation is precisely 𝑦1 which is coming from your left hand side - 0.1𝑒−𝑦1 - 

you collect all the constants in one place and that is equal to zero. 

 



Therefore, you have this non-linear equation 𝑔(𝑦1) = 0. You have to solve this equation to get 

𝑦1. If you recall, we have learned some non-linear iteration methods in one of our previous 

chapters. So, you may use one of those methods to obtain a solution to this non-linear equation 

which will be the approximation to the solution of your initial value problem at 𝑥 = 0.2. This 

is one way to handle this non-linear equation. 
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Let us put this idea in a general way. How to proceed when we are working with implicit 

methods because implicit methods in general gives us a non-linear relation involving the 

unknown 𝑦𝑗+1. The idea that we have proposed in the last example, is to go for one of the non-

linear iterative methods. Recall, that the trapezoidal method is given like this. This equation can 

be seen as a fixed-point problem where the iteration function 𝑔(𝑦) is given as 𝑦𝑗 +
ℎ

2
𝑓(𝑥𝑗 , 𝑦𝑗). 

 

These are known quantities + 𝑓(𝑥𝑗+1, 𝑦), so this is unknown to us. So, therefore you can define 

the iteration function like this, whose fixed point is precisely the point 𝑦 = 𝑦𝑗+1. So, that is what 

we are seeing from the trapezoidal method. So, that is what I have written here. We can view 

the trapezoidal method as a fixed-point iteration method. Now you can choose any initial guess, 

which we will denote by 𝑦𝑗+1
0  and then define the fixed-point iteration method like this, where 

you will plug in 𝑦0 and get 𝑦𝑗+1
1  and again plug in 𝑦𝑗+1

1  on the right hand side, get 𝑦𝑗+1
2  and so 

on.  

 

So, in that way you generate a sequence of numbers which is expected to converge to the fixed 

point of the function g and that is precisely the approximation of our solution at 𝑥𝑗+1. There is 



another approach which is called the predictor corrector approach, where you take the initial 

guess from the Euler method. Remember in the first approach, you get the initial guess 

arbitrarily, whereas in this we are taking the initial guess from the Euler forward formula, which 

is called the predictor step. 

 

And then use this value here to compute 𝑦𝑗+1, using the trapezoidal method and that step is 

called the corrector step. In that way, you have one predictor step, get an initial guess from the 

Euler forward formula, plug in on the right hand side and thereby the expression now becomes 

explicit. You can find 𝑦𝑗+1 from there and that is called the corrector step. And such a method 

is called the predictor corrector method. 

 

And since we are using Euler forward formula here and then computing the solution from the 

trapezoidal method, this method is also sometimes called as Euler trapezoidal method. 
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Let us take our previous example 𝑦′ = 𝑒−𝑦 on the interval [0,0.4] with ℎ = 0.2. We are given 

the initial condition as 𝑦(0) = 1. We will now compute the solution using the Euler trapezoidal 

method, that is the predictor corrector approach, which includes one predictor step, which is 

coming from the Euler forward formula and that is given by this value. Now you plug in that 

value into the trapezoidal method and perform the corrector step and get the value as 1.070966. 

 

Similarly, we can do the step 2. For step 2 again, you will take this value 𝑦1. Remember, do not 

take this value for the predictor step of 𝑦2. So, you have to take the corrector value from 𝑦1 and 

plug in that to the predictor step of 𝑦2 and you get the corresponding value. Once you get that 



value, you just plug into the corrector step and get 𝑦2 from here and that gives us the value for 

𝑦2.  

 

So, this is not the value for 𝑦2,nit is just a prediction and that is further corrected by the 

trapezoidal method. So, this is a nice illustration for the predictor and corrector method. In this 

lecture, we have learned 2 important methods, one is midpoint method which is an example for 

a 2 step method. And another method we learned is, the trapezoidal method, which is an example 

of an implicit method. We will continue our discussion on multi-step methods with explicit and 

implicit forms in the next lecture, thank you for your attention. 

 

 


