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Hi, we are learning numerical methods for initial value problem of a first order ordinary differential 

equation. In this, we have learned the Euler method for approximating a solution of a first order 

initial value problem in our last class. We will continue our discussion on Euler method in this 

class and study the error involved in the approximate solution computed by the method. 
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Recall, that we are interested in solving the initial value problem 𝑦′ = 𝑓(𝑥, 𝑦), where we are given 

an initial condition 𝑦(𝑥0) = 𝑦0, for some 𝑥0 in the interval on which the problem is posed. In the 

last class, we have studied Euler method for approximating a solution of this initial value problem 

at some grid points. We had two formulas, one is the Euler forward formula which is given here 

and another one is the Euler backward formula. 

 

In this class, we will study the error involved in the approximate solution obtained using the Euler 

forward formula. The error analysis for the Euler backward formula can be carried over in a similar 

way. Let us recall the Euler forward formula first. Given a point (𝑥𝑗 , 𝑦𝑗) and a parameter ℎ > 0, 



the Euler forward formula can be used to obtain the value 𝑦𝑗+1, which is an approximation to the 

solution y of this problem at the grid point 𝑥𝑗+1.  

 

This can be done for each j = 0, 1, 2 so on up to some N number of grid points. Observe, that we 

are given 𝑥0 and 𝑦0 in the problem itself, which is the initial condition. Once we fix h and generate 

the grid points 𝑥0, 𝑥1, ⋯ , 𝑥𝑛, say in the interval I, then we can obtain the approximation to the 

solution y of the given initial value problem at this grid points using this formula.  
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To derive the error involved in the approximate solution 𝑦𝑗+1, when compared to the exact solution 

𝑦(𝑥𝑗+1), we first use the Taylor's theorem about the grid point 𝑥𝑗 and write the solution at 𝑥𝑗+1 as 

𝑦(𝑥𝑗+1) = 𝑦(𝑥𝑗) + ℎ𝑦′(𝑥𝑗). This is the Taylor’s polynomial of degree 1, plus you have the 

remainder term 
ℎ2

2
𝑦′′(ξ𝑗).  

 

Since y satisfies the given first order ordinary differential equation 𝑦′ = 𝑓(𝑥, 𝑦), we can substitute 

𝑦′ in this representation by 𝑓(𝑥, 𝑦) and that gives us 𝑦(𝑥𝑗+1) = 𝑦(𝑥𝑗) + ℎ𝑓 (𝑥𝑗 , 𝑦(𝑥𝑗)) + the 

remainder term. Now, what we will do is, we will bring this 𝑦(𝑥𝑗) to the left-hand side and divide 

both sides by h and thereby this h will go and you will be left out with only 
ℎ

2
 in the remainder 



term. Thereby you will get this equation where the left-hand side is the approximation for 𝑦′(𝑥𝑗) 

and that is equal to 𝑓 (𝑥𝑗 , 𝑦(𝑥𝑗)).  

 

Up to here, this is what we have taken as the equation and now instead of having 𝑦′, we now have 

the corresponding finite difference formula and therefore we have this error. And if you carefully 

look at this error, you can see that this error goes to 0 as h goes to 0. And what is the order in which 

this term goes to 0? You can say that this is of 𝑂(ℎ). In this case, we say that the error term is of 

order h that is 𝑂(ℎ) and because of this we can see that Euler method is of order 1. 
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Remember, the remainder term is given like this and the remainder term as it is going to 0 with 

order 2. But because we have divided both sides by h, in order to make this left hand side to be an 

approximation to 𝑦′, we got to lose one order here and therefore Euler method finally happens to 

be of order 1. But what is the truncation error involved in this? The truncation error is nothing but 

the remainder term in the Taylor’s expansion. And therefore, we call 
ℎ2

2
𝑦′′(ξ𝑗) as the truncation 

error.  
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Note that, the truncation error is obtained when we use exact solution 𝑦(𝑥𝑗) while computing in 

the Taylor’s expansion. But in the Euler formula we use the approximate value 𝑦𝑗 while computing 

𝑦𝑗+1. This shows that there are more levels of error involved in computing 𝑦𝑗+1. One is, of course 

the truncation error and the other one is called the propagation error. Therefore, the mathematical 

error involved in the forward Euler method has two components.  

 

One is the truncation error and another one is the propagation error. Recall, that we came across a 

similar situation in our discussion on performing arithmetic operations with floating point 

approximations. Here we are facing a similar kind of situation. 
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As I said, the mathematical error in the forward Euler method defined as the exact value minus the 

approximate value involves two levels of errors. Namely the truncation error which we have 

already derived and is given by 
ℎ2

2
𝑦′′(ξ𝑗) and the propagation error now given by this expression. 

How do we get this expression for the propagation error? Let us see from the Taylor expansion we 

have seen that 𝑦(𝑥𝑗+1) is written as 𝑦(𝑥𝑗) + ℎ𝑓 (𝑥𝑗 , 𝑦(𝑥𝑗)).  

 

Remember we had 𝑦′ here but then we use the equation to replace 𝑦′ by f, plus we had the 

remainder term which is sitting here and then you have minus the Euler forward formula which is 

𝑦𝑗 + ℎ𝑓(𝑥𝑗 , 𝑦𝑗). So, this is what I am writing here precisely, you have 𝑦(𝑥𝑗) − 𝑦𝑗, which is coming 

from here plus ℎ𝑓(𝑥𝑗), exact value that is coming directly from your Taylor expansion of the exact 

solution −𝑓(𝑥𝑗), approximate value of the solution at 𝑥𝑗 that is 𝑦𝑗 coming from your forward Euler 

formula.  

 

Plus of course the remainder term which is coming from your Taylor part is sitting here. And 

finally, we have written the mathematical error involved in 𝑦𝑗+1 as the propagation error plus the 

truncation error.  
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We can further modify the expression of the propagation error and bring it to a more clear form. 

Let us now do this. Recall the propagation error is given by this expression from the previous slide. 

We will now use the mean value theorem for f with respect to the second argument. Let us denote 

the second argument by z, just for the notation clarity. By mean value theorem we can find an η. 

We will denote it by η𝑗 here, lying between the points 𝑦(𝑥𝑗), which is the exact value of the 

solution and 𝑦𝑗 which is the approximate value at 𝑥𝑗 computed by the Euler forward formula.  

 

And thereby we get 𝑓 (𝑥𝑗 , 𝑦(𝑥𝑗)) − 𝑓(𝑥𝑗 , 𝑦𝑗) is equal to now, we have to differentiate only 

partially with respect to the second argument times 𝑦(𝑥𝑗) − 𝑦𝑗. This is precisely the mean value 

theorem for one variable but here it is applied only to the second argument of the function f by 

fixing the first argument 𝑥𝑗. Let us use this expression in the mathematical error to get 

mathematical error involved in 𝑦𝑗+1. 
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If you recall, this is nothing but the propagation error plus the truncation error. Remember we are 

just writing the truncation error as it is, without disturbing it. Now we are just writing the 

propagation error which is originally given by this expression in a slightly different way, using the 

mean value theorem. What we are doing is, just observe that this is nothing but mathematical error 

involved in 𝑦𝑗.  

 

That is what we are writing here, one into mathematical error involved in 𝑦𝑗 is nothing but the first 

term in the expression of the propagation error. Whereas the second term in the propagation error 

is now written like this and here also you can see that the mathematical error involved in 𝑦𝑗 is 

sitting here. Therefore, this is also mathematical error in 𝑦𝑗 that is what we are writing here h times 

this h is already here 
∂𝑓(𝑥𝑗,𝑦𝑗)

∂𝑧
 which is coming from the mean value theorem times 𝑀𝐸(𝑦𝑗).  

 

Therefore, the mathematical error involved in 𝑦𝑗+1 can be written as, something into the 

mathematical error in 𝑦𝑗, that is the propagation error, plus the truncation error. Here you can 

observe that the mathematical error in 𝑦𝑗+1 is equal to this into the mathematical error in 𝑦𝑗 + the 

truncation error, that is, the mathematical error at every grid point includes more or less the 

mathematical error coming from the previous grid point plus a new error.  

 



That is the truncation error is something new that is getting accumulated at this step. If all these 

terms are positive, say, then the mathematical error will keep on increasing because mathematical 

error at the present grid is something which is coming from the previous grid plus new error. So, 

it may keep on increasing as we go on with the grid points. If you recall in our previous class, we 

have observed in the numerical solution of an example that as we go on with the grid points the 

error was increasing gradually.  

 

Now, we can see clearly the reason for such a behaviour in the numerical solution. This is because 

every time the mathematical error in the present grid is nothing but the mathematical error from 

the previous grid may be multiplied with some number greater than 1, times surely a new level of 

error is added here. So, that is quite interesting. Let us try to obtain an estimate that is the upper 

bound of the absolute value of the mathematical error. 
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For this let us assume that |
∂𝑓(𝑥𝑗,𝑦(𝑥𝑗))

∂𝑧
| is less than L at the grid point 𝑥𝑗, that is this term is bounded 

by L, is what we are now assuming and also, we assume that |𝑦′′(𝑥)| < 𝑌, that is we are also 

assuming an upper bound for this term where L and Y are fixed positive constants.  

 

Now what we will do is, we will take the modulus on both sides of this equation and then use these 

upper bounds in the appropriate places, to get an upper bound for the absolute value of the 



mathematical error in 𝑦𝑗+1 and that is given by 1 which is already there plus h into, now instead 

of this term since we have taken modulus, we will put the upper bound here that is L times 

|𝑀𝐸(𝑦𝑗)| + 
ℎ2

2
|𝑦′′(𝑥)|. Now we will put the upper bound here. Perhaps we will have to write it as 

strictly less than or we should write an equal sign here.  

 

I am sorry for this error but we will keep this in mind. Now we see we got this inequality for the 

mathematical error in 𝑦𝑗+1. You can observe that the same inequality will hold even for the 

mathematical error in 𝑦𝑗. You simply have to put j instead of j + 1 then this will become 𝑦𝑗−1, in 

order to get the same type of inequality for 𝑀𝐸(𝑦𝑗).  
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Now we will apply the same inequality for 𝑀𝐸(𝑦𝑗) and then we will do this recursively. For 

instance, if you apply this inequality for 𝑀𝐸(𝑦𝑗), you can observe that you will get this expression 

on the right hand side. How will you get it? This is less than or equal to, you already have 1 + hL, 

now you will have (1 + ℎ𝐿)𝑀𝐸(𝑦𝑗−1), plus 
ℎ2

2
𝑌, and that is for this term plus you already have 

ℎ2

2
𝑌. 

 

So, you combine all this, you will get this expression on the right hand side, when you put the 

same inequality to 𝑀𝐸(𝑦𝑗). Now we will keep on putting this idea again and again. For instance, 



now you can put this inequality that is this inequality in place of 𝑀𝐸(𝑦𝑗−1) and get an expression 

after rearranging the terms, that will be something more than this. And you keep on going with 

this idea till you reach 𝑦0 at this position.  

 

And at this stage, the right hand side expression will be given like (1 + ℎ𝐿)𝑗+1𝑀𝐸(𝑦0) and the 

second term will look like this. You can just write it and see two or three times if you do this 

exercise, you will see how this pattern is forming and from there you can write this expression on 

the right hand side.  
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So, we got this estimate so far. In fact, we can simplify the right hand side further using some well-

known formula, namely this one, which you can use for this term and we can also use this 

inequality, which is well known in the place of this term, and finally we can get the mathematical 

error involved in 𝑦𝑗+1. I have just written it as 𝑦𝑗, that does not matter because you can see that 

now after putting these formulas into this expression and after simplification, we can get this as 

the upper bound and that is clearly independent of 𝑦𝑗. 
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We will state the result, we have derived so far in the form of a theorem. As you can see that we 

need a bound for 𝑦′′, so we have to assume that y is a 𝐶2 function, in the interval in which we have 

posed our initial value problem. Then we can see that the mathematical error involved in 𝑦𝑗 can be 

bounded by this quantity. Let us try to understand this upper bound. We may assume that the 

second term is 0 because 𝑦(𝑥0) is actually given to us as the initial condition. 

 

We also see that the upper bound depends on 𝑥𝑛 − 𝑥0. Thus, if 𝑥𝑛 − 𝑥0 is large, the upper bound 

will be very large, irrespective of any j, that we are computing. In that way, we can see that this 

estimate is an overestimate and often the actual error is much smaller, then what is predicted 

theoretically. However, theoretically this is the estimate that we could obtain so far. We have 

proved a bound for the mathematical error involved in the approximate solution of the Euler 

forward method. 
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Let us take a simple example, where the ODE is 𝑦′ = 𝑦 and the initial condition is 𝑦(0) = 1, that 

is we have taken 𝑥0 = 0 and the interval is taken as [0,1]. Let us find the estimate for the 

mathematical error involved in the forward Euler method, using the previous theorem. For this, 

first we have to find an upper bound of the partial derivative of f with respect to y. You can see 

clearly, that this is equal to 1. And let us find a bound for 𝑦′′(𝑥) also. 

 

For this we need to know the solution and from there you can see that the upper bound may be 

taken as e. So, this is just for the sake of example we are doing. Then, from the estimate we 

obtained from the previous theorem, we can see that the mathematical error is bounded by 2.3354h, 

where ℎ > 0 is the discretization parameter. Remember, in the theorem we had two terms, the 

second term is not appearing here.  

 

Because, we have taken the initial condition as 1 and therefore, we assume that there is no error 

committed in the second term. Therefore, we have directly taken the second term as 0, that is why 

there is no second term involved in our upper bound here. The bound we obtained above is purely 

from the theoretical point of view. Let us see how it works numerically. 
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First let us write the formula of the Euler forward method for the present example. If you recall 

the forward Euler formula is given like this. Here you have to take 𝑓(𝑥𝑗 , 𝑦𝑗) = 𝑦𝑗, that is what is 

given as the right-hand side in our ODE. Therefore, if you take 𝑓 = 𝑦𝑗 , then the Euler forward 

formula reduces to this expression. Since 𝑦(0) = 1 we can see that 𝑦𝑗 = (1 + ℎ)𝑗. Why it is so? 

Take 𝑦1, which is equal to (1 + ℎ)𝑦0, where 𝑦0 = 1 that is equal to therefore 1 + h.  

 

Now if you go to 𝑦2, then 𝑦2 is given by (1 + ℎ)𝑦1 and that is equal to (1 + h) into (1 + h) which 

is coming from here and therefore it will be (1 + ℎ)2. Similarly, you can see that 𝑦3 =

(1 + ℎ)3 and so on. That is why we have written 𝑦𝑗 = (1 + ℎ)𝑗. Let us take j = 10 and we are 

interested therefore in 𝑦10. Let us take h = 0.1 and of course n = 10. The moment you take h = 0.1, 

then 𝑦𝑗 is given by (1.1)𝑗.  

 

Now we are taking j = 10, therefore you can see that 𝑦10 is nothing but (1.1)10, and that is given 

approximately as 2.5937. But 𝑦10 is the approximate value of 𝑦(1), because we are starting from 

0 and taking h = 0.1 and going 10 grid points. Therefore, at the end 𝑦10 will be the approximate 

value of 𝑦(1). And what is the exact value of 𝑦(1)? That is nothing but e and it is given by 2.71828.  

 

And you can now compare the approximate solution and the exact solution and see what is the 

mathematical error involved in them. You can directly find the mathematical error now, because 

we have exact solution and approximate solution. You can directly take the difference between 



them and the error is given by 0.12466 whereas the bound that we obtained from our theoretical 

estimate is actually 0.23354, because in the previous slide we have obtained that.  

 

So we have this now, you took h = 0.1. Therefore, we have the upper bound as 0.23354 which is 

theoretically predicted and from the numerical experiment, we see that the error is 0.1246. So, as 

we expected the mathematical error involved in the approximation is less than or equal to the 

theoretically predicted number that is this. Therefore, our numerical example is well in agreement 

with the theoretical prediction. 
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Finally let us obtain an estimate for the total error, when we include the arithmetic error in our 

computation. Let us assume that we obtained 𝑦̃𝑗 instead of 𝑦𝑗 due to some floating-point error 

involved in the computation. The error in 𝑦̃𝑗 , when compared to 𝑦𝑗 is say ϵ𝑗, then the total error 

which is defined as 𝑦(𝑥𝑗), that is the exact value −𝑦̃𝑗 now. Because we are not obtaining 𝑦𝑗 as we 

have some rounding error involved in our calculations. 

 

Therefore, we only obtained 𝑦̃𝑗, therefore the total error is nothing but the mathematical error 

which is 𝑦(𝑥𝑗) − 𝑦𝑗 + the arithmetic error which is 𝑦𝑗 − 𝑦̃𝑗. And that will be your total error. So, 

this is the mathematical error and this is the arithmetic error. We have already derived an estimate 

for the mathematical error. Similarly, we can also derive an estimate for the arithmetic error and 

that can be given with a factor like this.  



 

Remember the mathematical error is this much into this plus this and now the arithmetic error 

brings in a new term like this. So, this is the new term coming from the arithmetic error. I will 

leave it to you to derive this. It is not very difficult, once you understand the derivation of the upper 

bound of the mathematical error, the idea goes exactly the same. Recall, we have also obtained the 

bound for arithmetic error in certain finite difference formulas.  

 

The idea will go exactly in a same way. But what is interesting for us to observe here is, when you 

take h tending to 0, you can see that the mathematical error which is this times this one. Of course, 

we will always not give that much importance to the second term because that will often depend 

on the initial condition and the error involved in the initial condition. So, we will only bother about 

the actual computation part.  

 

If you see the mathematical error alone, it is this term into this and if you take as h tends to 0, you 

can see that the mathematical error is nicely tending to 0. What about the arithmetic error part? 

You can see that the arithmetic error part tends to infinity as h tends to 0. What it says? If you have 

even a small arithmetic error in your calculation, that may tend to amplify at least the upper bound 

here. But the fact is, it will also amplify the total error if you keep on reducing the grid step size h.  

 

So, do not think that you keep on reducing h, you get better and better approximation. Just like we 

discussed in the finite difference formula, there will always be an optimal h. If you go on reducing 

h below that optimal h, then your total error will tend to increase. This is the message we are 

getting from the upper bound of the total error involved in the forward Euler method. Remember 

the same kind of analysis can also be performed for backward Euler method.  

 

I leave it to you to see that. With this cautious note, we will close this lecture, thank you for your 

attention. 


