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Hi, we are deriving some finite difference formulas for approximating derivative of a given 

function. In the last class we have derived three primitive finite difference formulas for 

approximating the first derivative of a given function. Well, we started with the basic idea of 

getting these primitive formulas directly from the definition of the first derivative that we learned 

in the calculus course.  

 

Then we also obtained these formulas through the interpolating polynomial of degree 1, for the 

function f and then we also extended this idea of using the interpolating polynomials to get finite 

difference formulas for derivatives of higher order. That is, you can also get the finite difference 

formula for 𝑓′, 𝑓′′′ and so on. And also, you can get variety of finite difference formulas by 

choosing the degree of the interpolating polynomials.  

 

And also, the positions of the nodes involved in the interpolating polynomials. In today's class we 

will have another way of deriving finite difference formulas. This is using the method of 

undetermined coefficients.  
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This method is not something new to us. We have already seen this idea, when we were deriving 

the quadrature formula for a given function. The idea is almost the similar. Let us see what is this 

idea? The idea behind the method of undetermined coefficients to derive certain finite difference 

formulas for a given function is the following. Suppose you want to derive a finite difference 

formula for the kth derivative of a function f at a point x involving the nodes 𝑥0, 𝑥1, ⋯ , 𝑥𝑛.  

 

Then what you do is, well basically you look for the finite difference formula in this form, that is 

𝑤0𝑓(𝑥0) + 𝑤1𝑓(𝑥1) + ⋯ + 𝑤𝑛𝑓(𝑥𝑛). Here you already know what is 𝑥0, 𝑥1, ⋯ , 𝑥𝑛 because these 

are given to us and we have to only find 𝑤0, 𝑤1, ⋯ , 𝑤𝑛. Now how will you find? Well, you can 

find these unknown quantities by imposing the condition that this finite difference formula is exact, 

if the function f happens to be a polynomial of degree less than or equal to n. 

 

What is this n? Well, that is the n that is chosen here, that is the number of nodes. If you are given 

n + 1 nodes, then you have to find n + 1 unknowns. These n + 1 unknowns therefore you have to 

impose the condition that this finite difference formula should be exact for polynomials of degree 

less than or equal to n. Why?  

 

Because the space of all polynomials of degree less than or equal to n will have n + 1 basis 

elements. You take the monomial basis and then you can form a linear system with solution as the 



vector w, whose coordinates are 𝑤0, 𝑤1, ⋯ , 𝑤𝑛. This is something which we have already done in 

the quadrature formula. The same idea goes through here also. Let us see how to go ahead with it.  
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It is well understood through an example. Therefore, we will consider our nodes as 𝑥0 = 𝑥 −

ℎ, 𝑥1 = 𝑥 and 𝑥2 = 𝑥 + ℎ. That is, we are taking n = 2. If you recall, this is what we call as the 

central difference nodes and therefore the resulting finite difference formula will be called as the 

central difference formula. We will try to derive the formula for 𝑓′′(𝑥). Well, what you have to do 

is, first write the general form of the finite difference formula by taking the central difference 

nodes.  

 

And in order to get 𝑤0, 𝑤1 and 𝑤2, you have to impose the condition that this central difference 

formula is exact for polynomials of degree less than or equal to 2. Which is equivalent to imposing 

the condition that this formula is exact for polynomials 1, x and 𝑥2. Why we are restricting to only 

these particular polynomials? Because they form a basis for the space of all polynomials of degree 

less than or equal to 2.  

 

That is why we are restricting ourselves only to these particular polynomials which are 

polynomials of degree less than equal to 2. Now by considering each element of this basis we will 

get one linear equation in 𝑤0, 𝑤1 and 𝑤2.  
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Let us do this, let us first consider the polynomial of degree 0, that is, let us consider the case when 

f = 1 for all x. In this case, as per our condition, this formula should give you the exact value for 

the 𝑓′′(𝑥). What is 𝑓′′(𝑥)? If f happens to be the constant function, well that is 0. Therefore, you 

have 𝑓′′(𝑥) = 0 and what is the expression coming from the finite difference formula? Well, you 

have to take f = 1. Here and that leads to 𝑤0 + 𝑤1 + 𝑤2, therefore your first linear equation is 

given by this.  
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Let us go for the second case, that is, let us take 𝑓(𝑥) = 𝑥. In this case again, 𝑓′′(𝑥) = 0 and the 

right hand side will be given by 𝑤0(𝑥 − ℎ) because 𝑓(𝑥) = 𝑥, therefore you will have 

𝑤0(𝑥 − ℎ) + 𝑤1𝑥 + 𝑤2(𝑥 + ℎ) = 0. And that is your second equation. Now what you do is, you 



can use the equation we have obtained in case one. What was that equation? It was precisely 𝑤0 +

𝑤1 + 𝑤2 = 0.  

 

Therefore, these terms will disappear and you will be left out with (𝑤2 − 𝑤0)ℎ = 0, and we always 

assume that h is strictly greater than 0 therefore you will have 𝑤2 − 𝑤0 = 0 and that is the second 

equation.  

(Refer Slide Time: 08:10) 

 

Let us take the third case where 𝑓(𝑥) = 𝑥2 for all x. In this case, 𝑓′′ = 2 and the right hand side 

expression will reduce to this, obviously again you can use the expressions that is the equations 

obtained in case 1 and case 2. And then you can reduce this equation to this equation.  
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So, we got three equations by imposing three conditions and we have three unknowns 𝑤0, 𝑤1 and 

𝑤2 and they are appearing linearly in this system. Therefore, it is a linear system of equations. You 

can solve this system to get the values for 𝑤0, 𝑤1 and 𝑤2 and those are given by these expressions. 

Now, what we have to do? Recall, that we have assumed that our central difference formula will 

look like this.  

 

In this, these terms are known to us provided, of course, we know 𝑓(𝑥) and h then these three 

terms are known to us and now we also know 𝑤0, 𝑤1 and 𝑤2. You just substitute these values into 

this expression. You can see that the central difference formula for approximating the second 

derivative of a function f at a point x is given by this formula. This is how we derive the central 

difference formula.  

 

If you derive the central difference formula using the interpolating polynomial, you can see that 

that will also lead to the same expression. What you have to do is you have to take 𝑥0, 𝑥1 and 𝑥2 

as given here. This is the central difference nodes and then you write the Newton's form of 

interpolating polynomial using these nodes. That will be a quadratic polynomial, differentiate it 

twice and substitute 𝑥0, 𝑥1 and 𝑥2 into it.  

 

Then also, you will get the finite difference formula exactly the same as what you got using the 

method of undetermined coefficients. Once you understand this idea, you can also derive the finite 



difference formula for the second derivative using forward nodes, backward nodes. Similarly, you 

can do for third order derivative and so on. Just like how you can do with interpolating 

polynomials, you can also do with method of undetermined coefficients. You can obtain definite 

difference formula of any order with any given nodes.  
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Let us try to derive the mathematical error involved in the central difference formula, that we have 

derived just now. For that again you have to use the Tylor’s expansion. Remember, that the central 

different formula involves 𝑓(𝑥 + ℎ), therefore you have to use Taylor expansion for this term and 

also it involves 𝑓(𝑥 − ℎ). Therefore, you have to use Taylor's formula for this term also. That is 

why we are first writing the Taylor's formula for 𝑓(𝑥 + ℎ) as well as 𝑓(𝑥 − ℎ).  

 

And remember the central difference formula is given like this, therefore you put the Taylor 

formula for 𝑓(𝑥 + ℎ) here. Similarly, the Taylor's formula for 𝑓(𝑥 − ℎ) here and try to simplify 

that expression.  
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If you substitute these two expansions, what you get is this expression for the central difference 

formula. You can see how you get it. You simply have to substitute this into this and then just 

group the similar terms. Then you will get this expression. Remember, I am not writing the 

Taylor’s formula with the remainder, why because when you substitute this into this expression 

certain terms will get cancelled.  

 

And therefore, at the beginning at this stage you do not know what will remain as the remainder 

term, that will come as the mathematical error finally in our expression. That is not very clear at 

present, therefore what I suggest you is, you write the Taylor’s series. Substitute it into the 

expression, whatever may be the central difference formula you do. What you first do is, you write 

the Taylor’s series and then substitute it into the finite difference formula.  

 

And then group all the terms like this and see which are all the terms which are getting cancelled. 

In this case, if you see you got 𝑤0, 𝑤1 and 𝑤2 in such a way that 𝑤0 + 𝑤1 + 𝑤2 = 0. This is how 

you got the linear system for w. If you recall, we have just now seen that 𝑤0, 𝑤1 and 𝑤2 satisfies a 

linear system. In that, the first equation is 𝑤0 + 𝑤1 + 𝑤2 = 0. In fact, 𝑤0 − 𝑤2 is also equal to 0 

and this is equal to 
2

ℎ2.  

 

If you recall, that is what we obtained here. So, I am just using this in this expression and similarly 

this term is also going to 0, and what remains here is this term. So, this term onwards in this series 



will remain. Of course, certain terms may be 0 but the leading term remaining here is this term. 

Therefore, that gives us a clue that this term should be taken as the remainder and that will decide 

what is the order of accuracy of the central difference formula.  

 

Let us see that your linear system was this, therefore by using this you can see that the fourth order 

term will survive in this expression because this goes off, this goes off and this goes off. This is 

going to contribute for your 𝑓′′. You have 𝐷ℎ
(2)

, 𝑓′′ has to come to the other side in order to make 

it mathematical error and that will be equal to now this term. So, this gives us a clear idea of what 

you have to take as the remainder term.  

 

This is very important while deriving the expression for the mathematical error. You do not decide 

something apriorly, because you may be writing the reminder term for this, but that is not correct 

because the term is very nicely getting off from your formula. And what actually dominates your 

error is this term. Therefore, this has to be taken as the remainder term. You have to keep this in 

mind very carefully.  

 

And write finally that the left hand side, that is the central difference formula is equal to this term 

becomes 1 now. You have, therefore 𝑓′′(𝑥), all other terms vanished and you are left out with this 

term plus something. But all that can be clubbed and made as the remainder term here which 

involves unknowns ξ1 and ξ2, where ξ1 and ξ2 are some unknown numbers lying between the 

nodes 𝑥 − ℎ and 𝑥 + ℎ.  
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Now this is what finally we derived as the expression for the mathematical error. You see that this 

is the mathematical error and that is given by this, again you can use the intermediate value 

theorem. Recall, we have seen such a problem in one of our tutorial sessions, as I told in the last 

class. If you go to the lecture number 7, we discussed some tutorial problems in that lecture. In 

that you take the second problem.  

 

You will get an idea of how to use the intermediate value theorem, in order to reduce this 

expression to this expression. I leave it to you to see that. By using that, you can in fact write this 

expression as 
ℎ2

12
 into the fourth derivative of f for some unknown ξ lying between 𝑥 − ℎ and 𝑥 +

ℎ. So, finally this is the mathematical error for the central difference formula for 𝑓′′(𝑥). Again, 

from here you can see what is the order of accuracy of this central difference formula for the second 

derivative of a function.  

 

The order of accuracy is 2, that is it is the second order formula. This is all about how to derive a 

finite difference formula and how to obtain the mathematical error for that formula and also how 

to see what is the order of accuracy of that finite difference formula in approximating a derivative 

of some order of a function.  
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Now let us see how arithmetic error can be analysed in these formulas. In fact, the idea that I am 

going to introduce here for analysing the arithmetic error involved in finite difference formulas, 

can be used also to analyse the arithmetic error involved in quadrature formulas. Let us see how 

to analyse arithmetic errors in finite difference formulas. As you know finite difference formulas 

are useful in many practical applications. In particular, they are used in solving differential 

equations.  

 

Similarly, quadrature formulas are also used in practical applications. They are very nice however 

they suffer very seriously from the arithmetic errors just like how the polynomial interpolation 

suffer. Similarly, the quadrature formulas and finite difference formulas will also suffer 

significantly due to arithmetic errors. These are quite expected because these formulas are derived 

basically from the polynomial interpolations. Therefore, they have to also suffer.  

 

So, to analyse the arithmetic error involved in finite difference and quadrature formulas first what 

you do is, you write the exact value involved in the evaluation of the function at any point 𝑥𝑖, say 

is something like 𝑓𝑖, this is the approximate value. Just imagine that your computer evaluated the 

value of the function f at the point 𝑥𝑖 and it gave this value to you. It obviously will involve certain 

rounding errors.  

 



With that, it is supposed to give you this value but it gave you this value. And what is the error 

involved in it? We will denote that error by ϵ𝑖. So, since we are going to analyse the arithmetic 

error involved in the central difference formula with three central different nodes, I am just taking 

i to be 0, 1 and 2 that is we are going to have 𝑥0, 𝑥1 and 𝑥2 as the nodes. And if you recall, if you 

take 𝑥0 = 𝑥 − ℎ, 𝑥1 = 𝑥 and 𝑥2 = 𝑥 + ℎ, you will get the central difference formula in this form 

for approximating this second derivative of the function f at a point x. In this you are now involving 

an arithmetic error also.  
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Now let us see how this formula will look like if you use the approximate values instead of exact 

values of the function evaluated at the nodes. Then the central difference formula will look like 

this. I am using the approximate values of the function at the nodes. Let us denote the 

corresponding value by �̅�ℎ
(2)

𝑓(𝑥1). Now our interest is to see, what is the total error involved in it, 

what is the total error.  

 

Well, this is the exact value and this is the value given by your computer. Previously the 

mathematical error is the exact value minus the approximate value, that does not involve any 

rounding error. Now it is the approximate value that involves the approximation of the operator, 

that is the second order derivative operator as well as the approximation involving the rounding 

errors.  

 



So, that is the total error and that is given by f𝑓′′ − 𝐷ℎ
(2)

𝑓(𝑥) and this is the mathematical error 

plus you can see that the arithmetic error now becomes like this. How will you get this? Simply 

what you have to do you have to subtract 𝐷ℎ
(2)

𝑓(𝑥1) and add 𝐷ℎ
(2)

𝑓(𝑥1). So that is what I am doing, 

𝑓′′ minus the exact operator is given like this. Then the exact operator minus the operator with 

rounding error will give you this expression.  

 

Because the exact value minus the approximate value is taken as ϵ. That is why you will get I leave 

it to you to just derive this and see so, this is nothing but 𝐷ℎ
(2)

𝑓(𝑥1) −  �̅�ℎ
(2)

𝑓(𝑥1), that is what 

comes like this. You can easily derive that, so this step has to be done not only for the central 

difference.  

 

If I ask you to derive the total error of any formula, any quadrature formula or any finite difference 

formula. What you have to do is, the total error then you add and subtract the formula without any 

arithmetic error and then you will get mathematical error plus the arithmetic error here. Now you 

know that the mathematical error expression for the central difference formula is given like this. 

Just now we have derived this expression for the mathematical error. And now we have the 

arithmetic error, just taken from here therefore this is the expression for the total error.  

 

Just to have a clear idea of the behaviour of this expression, let us just take the maximum of all 

these ϵs and let us denote it by ϵ∞. ϵ∞ is the maximum of the absolute values of ϵ0, ϵ1 and ϵ2.  
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Now what you do is, you take the absolute value of the total error and that is given by this 

expression after taking the modulus. Now you use the triangle inequality to get this expression, 

that is the absolute value of the total error is less than or equal to 
ℎ2

12
|𝑓(4)(ξ)| plus you again take 

the modulus in the numerator. And apply the triangle inequality you will see that that is less than 

or equal to |ϵ2| + 2|ϵ1| + |ϵ0|.  

 

And you just replace all these ϵs by the maximum value, then you will see that that is less than or 

equal to 4ϵ∞. Then you of course have a ℎ2 term in the denominator. So, that is what I am getting 

here. Therefore, when you take the modulus on both sides of the expression for the total error, you 

can see that the modulus of total error is less than or equal to this quantity.  
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So, we have derived an upper bound for the total error. Now let us try to understand how this upper 

bound looks like. You can see that the upper bound involves a ℎ2 here, which will make the right 

hand side to decrease as h decreases. But it may not happen for h tending to 0, because after certain 

value of h, if you further decrease you can see that this term will start making the right hand side 

to increase drastically.  

 

So, that is what I am writing here. The error bound will initially get smaller and smaller as you 

decrease h, because of this term. But as you keep on decreasing the value of h, then after certain 

value of h the second term will start dominating and it will take the right hand side to increase 

drastically. Therefore, there is an optimal h, beyond which the right hand side will start increasing 

rapidly as h tends to 0.  
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In fact, qualitatively you can see that the upper bound of the total error will look graphically like 

this. This is what I am trying to say that because of the first term you can see that as h decreases, 

the upper bound will start decreasing but this may not last for all ℎ > 0. You can find an optimal 

h, beyond which if you start decreasing h, your upper bound will start increasing rapidly. So, this 

is what this expression tells you.  

 

What I am doing here, is that I am just plotting the graph of constant times ℎ2 plus some other 

constant divided by ℎ2. You may even take c to be 1 and k to be 1 and its graph will something 

look like this. That is qualitatively how this function as a function of h will behave.  
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Let us take an example. Our interest is to find 
𝑓′′(π)

6
 for the function 𝑓(𝑥) = 𝑐𝑜𝑠 𝑥. If you use the 

function value which involves certain approximation, then how the central difference formula will 

approximate the second derivative of the cos function. That is the question? To be precise, we will 

consider that the approximation 𝑓𝑖 is obtained from 𝑓(𝑥𝑖) using six significant digits.  

 

It means what, if you recall from our errors chapter, 6 significant digits means the relative error 

involved in 𝑓𝑖 when compared to 𝑓(𝑥𝑖). It will be bounded by 
1

2
× 10−5. Because you have six 

significant digits, if you have n significant digits, then it is - n + 1, that is why you have 5 here. 

Also, you can use the fact that cos function is always bounded between - 1 and 1 and from there 

you can see that the absolute error is less than or equal to 0.5 × 10−5. I am just using this here and 

getting this estimate for the absolute error.  
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We will now use this information into the central difference formula evaluated with rounding error. 

Rounding error is involved only in the function value, that is, just for the sake of simplicity, we 

are assuming that the rounding error is involved only in the function value but not in the h value.  
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Then what happens is, if you recall the total error has the upper bound as this. In that now we will 

try to eliminate this because this is involving an unknown and also, we will try to get an estimate 

for this ϵ∞, because we have assumed that the approximation in the numbers is just by six 

significant digits. So, with that you can see that ϵ∞ can be taken as 0.5 × 10−5.  

 

And just to eliminate this what I am doing is, I am taking ϵ to be approximately 
π

6
, why I took 

π

6
, 

because that is the point at which I want to find the derivative of the function. You may use some 

other idea but I am just using this idea to eliminate this ξ. With that I can see that the total error is 

bounded by 
ℎ2

12
𝑐𝑜𝑠 (

π

6
). This is a very crude approximation, actually plus 4 times ϵ∞ is less than 

equal to this.  

 

So, I will put this in the place of ϵ∞ and that gives me precisely how this upper bound function 

will look like. This is an estimate now for me. Let me denote this estimate by E(ℎ), it is a function 

of h.  
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So, we have the upper bound for the total error and we are using the notation 𝐸(ℎ) for that. Now, 

our interest is to find the optimal h. What optimal h means, optimal h means we want to find the 

value of this h, such that when you decrease your parameter h greater than that point, let us call 

this as ℎ∗, when ℎ > ℎ∗, as you decrease h, n this region your total error will tend to decrease at 

least, its upper bound will tend to decrease.  

 

If you take h less than the optimal h, ℎ∗ then as you go on decreasing h your total errors upper 

bound will increase. So, we want to find this optimal h, how will you find the optimal h. Well, the 

graph of the function 𝐸(ℎ) will be qualitatively looking like how I have shown in the graph of the 

previous slide. Therefore, it is very clear that the optimal h can be obtained as the minimum of the 

function 𝐸(ℎ).  

 

So, let us denote this optimal h by ℎ∗ and it can be obtained by finding the minimum of this 

function. So, that optimal h is such that the upper bound will increase drastically if you go on 

reducing h in the region 0 to ℎ∗. That is the danger of, you know, go on decreasing the parameter 

h believing or thinking that you will get better and better approximation. No, it is not true if we 

are putting these formulas on a computer then there is a limit beyond which you cannot go on 

decreasing your h.  

 



That is the moral of this story. Let us see what is this ℎ∗ in this particular example. To find that, 

you have to find the derivative of this function 𝐸(ℎ) and see where that derivative vanishes. This 

is a simple and well-known technique introduced in the calculus course, how to find maximum 

and minimum of a function. Using the technique, you can find this ℎ∗ and in this example that ℎ∗ 

is given by 0.129.  

 

So, remember if you take h less than 0.129 and from there if you keep on decreasing the parameter 

h then the upper bound of the total error will increase, that is what we are seeing. That does not 

mean that the total error should increase. But unfortunately, it will also increase in this particular 

example.  
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What I am doing is, I am taking 𝑓′′ (
π

6
). Remember, 𝑓(𝑥) is taken to be cos x, therefore 𝑓′′ (

π

6
) is 

given by this number, up to some 10 digits I am taking. And now let us see how this central 

difference formula will approximate the second derivative of the function f, that is cos function. 

When you compute these values on a computer, I am just taking h = 0.2 which is greater than the 

optimal error in this example, well the value obtained for 𝑓′′ (
π

6
) using the central difference 

formula on the computer.  

 

That is why I am putting a bar there, because it will certainly involve the arithmetic error. And 

computer gave us this value which is pretty close to the exact value. I mean this is also strictly 



speaking not the exact value but this is the value with better accuracy than this value. That is what 

it means and when compared to this value this approximate value has the total error like this and 

the upper bound has the value this.  

 

Remember the upper bound expression is given like this. So, you can plug in h in this expression 

and get the upper bound value also at h = 0.2 and that is given like this. Now let me take ℎ = ℎ∗, 

that is the optimal value of h. With that h, your central difference formula gives this approximation. 

The total error involved in it, is this. Well, you can see that from h = 0.2 to h = 0.129. The total 

error decreased as we expected also the value of the upper bound also decreased.  

 

Let us go ahead and choose a h less than the optimal error and see what happens. Now I am 

choosing h as 0.005 which is less than ℎ∗. You can see that the value of the central difference 

formula for the function 𝑓′′ (
π

6
) is given like this. The total error you can see that it increased from 

what you have got for h = 0.129. By reducing the value of h, we got a bad approximation.  

 

But theoretically when you take h tending to 0, you are supposed to get better and better 

approximation but numerically when you compute on a computer, the situation is different. That 

shows that computer is now started making significant error in this calculation coming through the 

rounding error. You can also see that the upper bound has drastically increased. I have further gone 

ahead and took h = 0.001.  

 

Well, I am decreasing h therefore mathematically, I should get better approximation for the second 

derivative using the central difference formula. But my central difference formula gave this as the 

value and therefore what is the total error involved in it is really almost 100 percent error it gave 

and the upper bound value is 20. So, that is the danger in dealing with the computation especially 

when you do on a computer you have to be very careful.  

 

Mathematically it may be that when you go on decreasing certain parameters you will get better 

and better approximation. But it may not be the situation when you go to implement these methods 

on a computer. One has to carefully understand the error analysis both from the mathematical point 



of view as well as from the computation point of view. With this note, let us conclude this lecture, 

thank you for your attention. 


