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Hi, we are learning quadrature formulas to approximate a given integral. In this we have already 

seen rectangle rule, midpoint rule and trapezoidal rule and also their composite versions. In 

today's class we will learn Simpson’s rule. Simpson’s rule is obtained by integrating the 

corresponding quadratic polynomial, interpolating the integrand at 3 specific nodes.  
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Recall, that we obtain the quadrature rules by first approximating the given integrand by its 

interpolating polynomial of certain degrees, by supplying the nodes explicitly. That way today, 

we will take the number of nodes as 3 that is n = 2. By this we have to give 3 nodes 𝑥0, 𝑥1 and 

𝑥2. Therefore our quadrature formula will be 𝑓(𝑥0)𝑤0 + 𝑓(𝑥1)𝑤1 + 𝑓(𝑥2)𝑤2. If you write the 

interpolating polynomial 𝑝2 in the Lagrange form, you get this expression for the interpolating 

polynomial with n = 2.  

 

The idea is to integrate this polynomial and thereby you will have integral a to b for the 

Lagrange polynomials and they give you 𝑤0, 𝑤1 and 𝑤2. So, this is the idea that we have been 

following to derive the quadrature rules.  
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And that leads to this expression. And now let us see how to choose the nodes because we can 

choose different nodes to get different quadrature formulas. For Simpson’s rule we have to 

choose the nodes like this. They are equally spaced in the interval [𝑎, 𝑏] and they are 𝑥0 = 𝑎, 

𝑥1is the midpoint of the interval [𝑎, 𝑏] and 𝑥2 is b. Once you get this, you plug in this into this 

expression and you have to perform this integrals, that is what is the difficult job that we have 

right now.  

(Refer Slide Time: 02:57) 

 

For that, we will use a change of variable in order to make this calculation little simple and 

calculate these 3 integrals and see how they look like. First let us take ∫ 𝑙0(𝑥)𝑑𝑥
𝑏

𝑎
, 𝑙0 is the 

Lagrange polynomial with k = 0. And its expression is given like this and therefore this is the 

integrand. You can see that it is a quadratic polynomial, therefore you can explicitly integrate it 

and just to make the calculation simple we will make this change of variable here.  



 

And then integrate it to get the expression for the integral as 
𝑏−𝑎

6
. Similarly, we have to evaluate 

this integral, as well as this integral. Let us see how they come out to be.  
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For the second integral, it is ∫ 𝑙1(𝑥)𝑑𝑥
𝑏

𝑎
. You can again write the expression for 𝑙1(𝑥) and then 

use the change of variable, similar to what you did with 𝑙0 and you can see that finally that 

integral will reduce to 
4

6
(𝑏 − 𝑎) and a similar calculation will also give us ∫ 𝑙2(𝑥)𝑑𝑥

𝑏

𝑎
. Again, 

it is equal to 
𝑏−𝑎

6
. Now you just have to plug in these values into the ∫ 𝑝2(𝑥)𝑑𝑥

𝑏

𝑎
.  
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Remember  ∫ 𝑝2(𝑥)𝑑𝑥
𝑏

𝑎
 is given like this, where you just have to put this value in the first term 

and this value in the second term and this value in the third term and that gives you the required 



Simpson’s rule given by this formula and that is obtained by simply integrating 𝑝2(𝑥) with 𝑥0 =

𝑎 that is what is shown here, 𝑥1 is equal to the midpoint of the interval [𝑎, 𝑏] and 𝑥2 = 𝑏.  If 

you choose the nodes like this, then the corresponding rectangle rule is what is called the 

Simpson’s rule.  
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Let us see the geometrical interpretation of the Simpson’s rule. Suppose your function 𝑓(𝑥) is 

graphically looking like this, then  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is the area under the graph of the function 𝑓(𝑥) 

between the interval [𝑎, 𝑏]. That is the geometrical interpretation of the integral and that is 

shown in the light red color here and this is the region which you have to find the area and that 

gives you the ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
. This is precisely what we want to find. 
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But, Simpson's rule takes the quadratic polynomial interpolating the function f at the nodes a,  

(𝑎 + 𝑏)/2 somewhere, I am just roughly placing it, It is the midpoint of the interval [𝑎, 𝑏] and 

then b. Say for instance, the graph of the interpolating polynomial is given roughly by this white 

solid line then the Simpson’s rule gives us the area under the graph of 𝑝2(𝑥). This is just a 

roughly drawn graph for the quadratic polynomial interpolating the function 𝑓(𝑥). Just to 

illustrate the geometry of the Simpson’s rule. 

 

Now let us see, how the mathematical error can be derived. Remember, the mathematical error 

involved in the Simpson’s rule is going to include the area covered in this place and the area 

covered in this place. So, these 2 things are going to be precisely contributing to our 

mathematical error.  
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And by definition the mathematical error involved in the Simpson’s rule is nothing, but the 

exact value that is ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 minus the value obtained from the Simpson’s rule which is 

precisely the integral ∫ 𝑝2(𝑥)𝑑𝑥
𝑏

𝑎
. So therefore this is the basic definition of the mathematical 

error involved in the Simpson’s rule. As we did in other cases, we can also get an expression 

for this mathematical error. For that, you have to assume that f is a 𝐶4 function in the interval 

[𝑎, 𝑏]. 

 

Once you have that, then the mathematical error can also be represented by this expression. That 

is what the theorem says it can be written as −
𝑓(4)(η)(𝑏−𝑎)5

2880
, η ∈ (𝑎, 𝑏). So that is the expression, 



that you can obtain for the mathematical error whereas this is the basic definition of the 

mathematical error.  

 

The proof is not very difficult but it is little bit involved. Therefore, we will omit this proof for 

our course. However, we have given the proof in our notes. Interested students can go through 

the proof.  
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Let us take an example. We will again consider the same integral, which we have been working 

with the other quadrature formulas also. We will consider evaluating the integral ∫
1

1+𝑥

1

0
𝑑𝑥, here 

f is taken as 
1

1+𝑥
. The exact value of this integral is log 2 and numerically you can approximately 

take it as 0.693147 and there are more terms but we have just rounded it up to here. Now let us 

apply the Simpson’s rule and see how the value comes out of this Simpson’s rule for this 

integral.  

 

For that, we have to take the formula for the Simpson’s rule that is (𝑏 − 𝑎)/6, that is 1/6 here 

into 𝑓(𝑎), you can check that 𝑓(𝑎), a = 0 therefore 𝑓(𝑎) is 1, plus 4 times 𝑓(𝑎 + 𝑏/2) that is 

0. 5. That turns out to be 8 / 3 + 𝑓(𝑏). Now you just calculate this, you will get the value of the 

integral as 25 / 36, if you use this Simpson’s rule. That is only an approximate number and that 

in the decimal form it gives you 0.694444.  

 

You can see that the error involved in this is roughly 0.001297. Of course this is, strictly 

speaking, also involving the arithmetic error because we are representing all these numbers after 



a rounding approximation. Therefore, we should ideally call it as total error but just with a little 

abuse of notation, we are just calling it as mathematical error only. But you have to bear in mind 

that strictly speaking this is the total error.  
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If you recall, we have derived composite quadrature rules for both rectangle and trapezoidal 

rule. We will also derive the composite Simpson’s rule now. What is the basic idea of any 

composite quadrature rule? 

(Refer Slide Time: 12:01) 

 

I hope you have seen the previous videos, you know the idea very well. You just have to 

introduce a partition to your interval [𝑎, 𝑏]. It can be non uniform partition also. But we have 

been taking only uniform partitions, just for the sake of simplicity. Here also we will take a 



uniformly spaced partition with the length size of each partition as h and therefore you can 

introduce the partition points as 𝑥𝑖 , 𝑖 = 0, 1, 2, ⋯ , 𝑛,  where 𝑥𝑖 − 𝑥𝑖−1 = ℎ.  

 

And also, we will make sure that 𝑎 = 𝑥0 and 𝑏 = 𝑥𝑛. Now here is a catchy point, when you are 

deriving the Simpson’s rule, remember you need 3 nodes in order to define the Simpson’s rule. 

Therefore, when you take the partition, you need 3 nodes in that interval. Suppose you take 

some point as a and some other point as b, there should be 1 point in between these 2 nodes in 

order to define the Simpson’s rule.  

 

Therefore, you have to take the pieces of the Simpson’s rule as 𝑥𝑖−1 to 𝑥𝑖+1. So that 𝑥𝑖 comes 

as a node point. Because you are only given the nodes and you are supposed to find the formula 

based only on those nodes, you cannot generate a new node in order to evaluate the integral. 

You have to, somehow, manage them with the nodes given to you. Therefore, you cannot take 

𝑥𝑖 and 𝑥𝑖+1.  

 

If you take like that, that is suppose you are taking this as 𝑥𝑖 to 𝑥𝑖+1, then you can clearly see 

that there is no node between these 2 but you need one in between node in order to define 

Simpson’s rule. Therefore, this way of taking nodes is not correct. You have to take 𝑥0 and then  

𝑥2, this as 1 piece although you have 𝑥1 as a node in your partition you have to take this as 1 

interval and similarly 𝑥2 to 𝑥4 you have to choose although 𝑥3 is a node, you cannot take 𝑥2 to 

𝑥3.  

 

Then you cannot apply the Simpson’s rule in the interval 𝑥2 to 𝑥3, you can only apply Simpson’s 

rule in the interval 𝑥2 to 𝑥4, like that it goes. That clearly says that the number of node points 

that you take in the interval in order to apply composite Simpson’s rule, you need that number 

to be of even number.  
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So to make sure that we need even number of nodes, let us take the number of nodes as 2n. So 

that is something which you have to remember always, the number of nodes that is needed for 

us to generate composite Simpson’s rule, should be an even number. Now once you make sure 

then your ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 can be first broken into the smaller integrals taken on the intervals 𝑥2𝑖 to 

𝑥2𝑖+2. Therefore, there is 1 node always sitting in between these 2, that is the idea.  

 

Once you split this integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 into integrals of this form, remember this is very 

important, you should not forget it. This is very important for Simpson’s rule, you can go back 

and observe that this complication is not there in trapezoidal rule as well as in the rectangle rule. 

So therefore, you have to keep this in mind when you are working with composite Simpson’s 

rule.  

 

Then once you make the choice of your intervals properly,  you can easily get the formula for 

the composite Simpson’s rule, by applying the Simpson’s rule for each of these integrals and 

that is given by this expression. And now you have to take that with this summation you can 

see that gives you 2ℎ because your interval is always 𝑥0 to 𝑥2 and then 𝑥2 to 𝑥4, like that you 

are jumping 2h length in each sub interval. That is why, you see that here you have instead of 

𝑏 − 𝑎 you have 2h divided by 6 and then the Simpson’s formula is applied here.  
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After a suitable rearrangement of these terms, you can finally get the formula for the composite 

Simpson’s rule. Like this, you can carefully go through and see how I have rearranged these 

terms in order to get this nice looking formula. And this is the composite Simpson’s rule. Well, 

like this you can keep on choosing n = 3, 4, 5 and so on and also for every given n, you can also 

choose nodes at different positions in order to get different quadrature rules.  

 

We have only given 3 cases rectangle rule of course we have also given midpoint rule and then 

we have given trapezoidal rule for n = 1 and Simpson's rule for n = 2. You can keep on going 

like this and you can generate many such quadrature rules.  

(Refer Slide Time: 18:32) 

 

Let us see another way of deriving this quadrature rules, called method of undetermined 

coefficients. This is particularly important when you go to derive Gaussian quadrature rules. 



That is why, we are first introducing this method. If you recall, we have the quadrature rule in 

this form. You know how this form comes out, I am not going to repeat that all the quadrature 

rules that we have derived so far. We look finally in this form for a suitably chosen set of nodes 

for a given n.  

 

And the weights 𝑤𝑖’s are computed by integrating the corresponding Lagrange polynomials. 

Now in this we are given these nodes and the weights are to be found. And these weights are 

found by just directly integrating the Lagrange polynomials. Now there is another way to find 

these weights, that is what we will be doing here and this way of finding weights is what we 

call as method of undetermined coefficients. Let us see how to find this 𝑤𝑖’s instead of going 

for integrating the Lagrange polynomial.  
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What you do is, first of course we are given the n + 1 node points that is given to us and then 

we have to find these weights and so far we are doing it using the interpolating polynomials.  
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There is another way to do it, let us see how to do that. We first fix this nodes and then to get 

the corresponding weights we will impose certain conditions. What are those conditions? We 

will say that this rule is exact for polynomials of degree less than or equal to n, this is the 

important point. Remember this is the exact integral and this is the approximation for the exact 

integral, that is why we have put this symbol approximately equal to.  

 

So, this left hand side is not exactly equal to the right hand side but in this condition what we 

are saying is, this will be exactly equal if this integrand happens to be a polynomial of degree 

less than or equal to n, that is what we are imposing as a condition. And this will obviously give 

us n + 1 equations involving 𝑥0, 𝑥1, ⋯ , 𝑥𝑛 and also 𝑤0, 𝑤1, ⋯ , 𝑤𝑛. In this 𝑥𝑖 's are known to us, 

therefore we can treat this system of equations with unknown as 𝑤𝑖 's.  

 

In that way, we will get a linear system of equations with unknown vector as w whose 

coordinates are 𝑤0, 𝑤1, ⋯ , 𝑤𝑛. Now you solve this system, if it is possible, and you get the 

weights. This is the alternate way to get weights and this approach is what we call as the method 

of undetermined coefficient. This method is well understood through certain examples.  
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So let us try to understand this method through this simple example. We want to find the 

quadrature rule for evaluating an approximate value of this integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
.  For that, we 

want to propose the quadrature rule in this form. In this what we are doing, we are taking 𝑥0 as 

a, 𝑥1 as the midpoint of the interval a to b and 𝑥2 as b. If you recall, we have already learned 

how to derive the expressions for 𝑤0,  𝑤1 and 𝑤2 using the corresponding interpolating 

polynomial.  

 

And we have in fact called that quadrature formula as Simpson’s rule in our previous slides. We 

will take the same situation that is the same set of nodes and we have n = 2 here, because we 

have 3 nodes. Instead of going for the method of interpolating polynomials, now we will go 

with the method of undetermined coefficients. And try to get these weights 𝑤0, 𝑤1, 𝑤2 by 

imposing the condition that this will give you the exact value to this integral.  

 

That is this will be exactly equal to the right hand side, if this function f happens to be a 

polynomial of degree something less than or equal to 2. So, this is the condition that we will 

impose and you can clearly see that this condition is equivalent to the condition that the formula 

is exact for the polynomials which are coming from the monomial basis of the space of all 

polynomials of degree less than or equal to 2.  

 

Remember the set of all polynomials of degree less than or equal to 2 forms a vector space and 

the functions 1, 𝑥, 𝑥2 will form a basis for this vector space. In general, if this is some n then 

the set of all polynomials of degree less than or equal to n will form a vector space. And the set 



of functions 1, 𝑥, 𝑥2 up to 𝑥𝑛 will form a basis for this vector space and this basis is called the 

monomial basis. 

 

Now instead of applying this idea, that is this condition on some general polynomial of degree 

less than equal to 2, you can apply this condition on each member of the monomial basis. That 

is the idea, remember if you apply this condition to each of this polynomials, you will get a 

linear equation for each polynomial.  
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So that is the way to get a system of linear equations. Now, let us see how to do that. Remember, 

this is the integral that we want to evaluate and this is the quadrature formula that we are 

proposing to approximate the value of this integral. In this what you have to do is, first take 

𝑓(𝑥) = 1. Remember, just take what happens when this integrand happens to be the constant 

function 𝑓(𝑥) = 1, ∀𝑥. In this case, as per our condition this quadrature formula should give 

exact value.  

 

Therefore, this is the imposed condition under the method called method of undetermined 

coefficients. So, you are just imposing this condition. On the right hand side, you have to take 

𝑓(𝑎) = 1 and 𝑓 (
𝑎+𝑏

2
) = 1 and similarly 𝑓(𝑏) = 1, because you are now considering your 

integrand to be the constant function, 𝑓(𝑥) = 1 for all x. That gives you the right hand side as 

𝑤0 + 𝑤1 + 𝑤2, and that should be equal to the left hand side integral which is integral a to b, 

now your function is just 1. Therefore, we are putting 1 dx. 
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You can explicitly compute the left hand side and that gives you this equation. This is the first 

equation for our system. Now, you have to impose our second condition. What is the second 

condition? The second condition is that when the integrand happens to be the identity map that 

is 𝑓(𝑥) = 𝑥 for all x then again it is a polynomial of degree less than equal to 2. Therefore, your 

integral value and the value obtained from this formula they should be exactly equal.  

 

That is what you are imposing here the integral is ∫ 𝑥
𝑏

𝑎
𝑑𝑥 and the right hand side formula now 

gives you this expression. They both should be exactly equal that is what the condition, that we 

are demanding. And again, that gives us this equation. You can observe that these 2 are 

equations with unknowns as 𝑤0, 𝑤1 and 𝑤2 and you can also see these are linear in w.  
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And finally, you have to impose the condition that 𝑓(𝑥) = 𝑥2,  then what happens? Again, you 

will have ∫ 𝑥2𝑑𝑥
𝑓

𝑎
, is exactly equal to the right hand side expression where you have to put 

𝑓(𝑥) = 𝑥2 there. That is why ,you have a square and this and this. And again, you evaluate this 

integral explicitly and that gives you another equation. Similarly, if n = 3 then you have to 

impose this condition with 1, 𝑥, 𝑥2 and 𝑥3.  

 

And similarly, for any given n, you have to accordingly take the monomial basis of that vector 

space, all polynomials of degree less than equal to whatever n that we give. And then you have 

to impose these conditions one by one, that is, 𝑓(𝑥) = 1, 𝑓(𝑥) = 𝑥, 𝑓(𝑥) = 𝑥2 and so on 𝑓(𝑥) =

𝑥3, you have to put and so on. Whatever n you are given up to that you have to put each case 

will give you a linear equation. And thereby you will have a linear system of equations. In the 

present case we have taken n = 2. 

 

Therefore, our linear system will have 3 equations which we have just now derived. And these 

3 equations are given like this you see that the unknown vector in this is equal to 𝑤0, 𝑤1 and  

𝑤2 and what is the right hand side vector b and that is given like this. So, that is the right hand 

side vector b. Now you can solve this linear system to get the weights 𝑤0, 𝑤1 and  𝑤2. 
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And that is not very difficult, you can explicitly solve it and your weights are given like this and 

if you recall, that will lead to this formula by imposing these weights into this expression. You 

get this formula and this is nothing but the Simpson’s rule. In fact, method of undetermined 

coefficient will lead to a quadrature rule which is exactly the same as the corresponding 



quadrature rule derived by integrating the corresponding interpolating polynomial of the 

function f. 

 

So, what I am trying to say is, these 2 methods, that is the method of undetermined coefficients 

and the method by directly integrating the interpolating polynomials, these 2 methods will 

finally lead to the same quadrature formula, that is all. Only the way we derive these weights 

are different. In the interpolating polynomial case, we are integrating the Lagrange polynomials 

and getting these weights. 

 

Whereas, in the method of undetermined coefficients, we are imposing the condition that the 

quadrature rule is exact for polynomials of degree less than or equal to n. Whatever the 𝑛 that 

we choose and with that we are applying this condition on the corresponding monomial basis 

and we are getting a linear system out of that. And that linear system will give you the weights 

again that is the method of undetermined coefficients. Whatever may be the method, finally the 

quadrature rule will be the same, that is the idea.  

 

We will see why we have introduced this method of undetermined coefficients, when we know 

that the final expression that is the formula is going to be the same as we did with the 

interpolating polynomials. But there is a major advantage with this method of undetermined 

coefficients. We will discuss this in the next class thank you for your attention. 

 

 

 

 


