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Hi, in this class we will start a new chapter on numerical integration and differentiation. We 

will develop some numerical methods to find approximate value of an integral, which is also 

called quadrature formulas, and we will also develop some methods to approximate derivatives 

of a given function, which are called finite difference formulas. In this lecture in particular we 

will develop rectangle rule and trapezoidal rule for approximating an integral of a given 

function. 

(Refer Slide Time: 00:54) 

 

Therefore, our problem in this section is to evaluate ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 for some given function f 

defined on the interval [𝑎, 𝑏]. The process of approximating the value of the integral is usually 

referred to as numerical integration or quadrature formula. We will use the notation 𝐼(𝑓) to 

denote the exact value of the integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
. The idea is to first look for a simpler function 

that can approximately represent the given function f.  
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And then we want to find the integral of that simple function and consider the value of this 

integral as an approximation to our original integral. So that is the broad idea of developing 

numerical methods for integration or quadrature formulas. Now, the question is what kind of 

functions that we will consider as an approximation to our given function?  
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Of course, we already studied such approximations through polynomial interpolations. If you 

recall, we are given n + 1 nodes,  𝑥0, 𝑥1, ⋯ , 𝑥𝑛, with that we will first construct a polynomial 

that interpolates the function f at these nodes. Once you have this interpolating polynomial, then 

you can go for finding the integral of this polynomial and consider that as the approximate value 

to your original integral. 

 

So that is the idea, once you have this idea then you have scope to develop many methods. For 

instance, you can give a value of n and then you give nodes, you get a polynomial. Different 



value of n gives different polynomials and also for a fixed n, if you choose different nodes that 

also can lead to different interpolating polynomial, for your given function. Each such choices 

can lead to a quadrature formula. In this way you can find many different quadrature formulas. 

Here, we will try to develop few numerical integration formulas. Let us see how this integral 

will look like. 
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When you go to integrate the polynomial, if you recall 𝑝𝑛(𝑥) can be written in this form. If you 

recall, I am writing it in the Lagrange form and now I will integrate this polynomial on the 

interval [𝑎, 𝑏] and that can be written as ∑ 𝑓(𝑥)𝑛
𝑖=0   into integral of the Lagrange polynomials. 

Why it is so? We are just taking the integral inside the summation ∑ 𝑓(𝑥𝑖) ∫ 𝑙𝑖(𝑥)𝑑𝑥
𝑏

𝑎
𝑛
𝑖=0 . So, 

this is what we are denoting by 𝐼(𝑙𝑖) here. 
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Now, this can be written as 𝑓(𝑥0) and then integral of the Lagrange polynomial at 0 is what we 

call as 𝑤0, and similarly 𝑤1, and so on up to 𝑤𝑛 can be defined.  
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As 𝑤𝑖 is equal to the integral of the corresponding Lagrange polynomials. So this is how a 

general formula for the numerical integration will look like. If you go with this idea, that is you 

first fix a n and also fix n + 1 nodes, so these are given to us. So, this is given to us and all these 

are given to us. With this, you will generate the interpolating polynomial for the function f and 

then you will integrate that polynomial and the formula finally will look like this. Let us take 

some specific values of n and some specific choice of the nodes and see how these formulas 

look like? Let us start with the simplest formula called rectangle rule. 
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We call our general integration formula or the quadrature rule will look like this. In that we will 

take n = 0 and therefore our integration formula will be simply 𝑓(𝑥0)𝑤0. So, these are not there 

for us and now you can get different formulas for different choice of 𝑥0. 
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Now, let us go to integrate this formula. You can see that the integral of the polynomial 𝑝0, that 

is the interpolating polynomial of degree 0 will be simply (𝑏 − 𝑎)𝑓(𝑥0). Here you can see the 

different choice of 𝑥0 will lead to different methods with the choice of n = 0. Let us take 𝑥0 =

𝑎, you can see that the corresponding formula will be (𝑏 − 𝑎)𝑓(𝑎), and this is called the 

rectangle rule. 

 

Let us see how this formula will look like geometrically. Let the red solid line indicates the 

graph of the function 𝑓(𝑥) and our interest is to find the integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
. Geometrically, it 

is nothing but the area under the graph of the function 𝑓(𝑥) in the interval [𝑎, 𝑏]. So that is what 

is shown in this shaded region. Therefore, ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is what is given here. 

(Refer Slide Time: 07:57) 



 
And now, let us see what this rectangle rule gives? The rectangle rule is nothing but the area of 

the rectangle with sides as 𝑎, 𝑏 and 0 to 𝑓(𝑎). Therefore, the rectangle rule gives the area of this 

rectangle that is precisely given by (𝑏 − 𝑎)𝑓(𝑎). So, our aim is to get this entire area but the 

rectangle rule is only giving us this much of area. Now, what is the error involved in the 

rectangle rule? You can see that there are some regions which are newly included in our area 

and this region is excluded in our area. 

 

Therefore, the error involved in the approximation of the integral by the rectangle rule is going 

to take care of this region and then a small region which is included here. Mathematically this 

is 𝐼(𝑓) − 𝐼(𝑝0) and that is what is going to be the error involved in the rectangle rule. We use 

a special notation for the rectangle rule and that is 𝐼𝑅(𝑓). 
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Therefore, the error involved in the rectangle rule is the difference between the exact value and 

the approximate value and we call this as mathematical error. We can derive an expression for 

the mathematical error involved in the rectangle rule. Let us state it as a theorem. For this, we 

need our function f to be continuously differentiable function defined on the interval [𝑎, 𝑏]. 

Then the mathematical error involved in the rectangle rule which is denoted by 𝑀𝐸𝑅(𝑓) can be 

written in the form 
𝑓′(η)(𝑏−𝑎)2

2
, for some η in the interval [𝑎, 𝑏]. Let us see how to prove this 

theorem. 
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For this, you first take a point x which is not equal to a. Why we are specifically excluding a? 

Because, a is already included in the formula as the node of the interpolating polynomial. 

Precisely, we have to take x to b, different from the node that is used in the quadrature rule.  

Here, the node is a, therefore we are excluding that and taking any x in the interval (𝑎, 𝑏] and 

consider the polynomial 𝑝0(𝑥) + 𝑓[𝑎, 𝑥](𝑥 − 𝑎). If you recall, this is nothing but 𝑝1(𝑥).  

 

And if you recall, 𝑝1(𝑡) can be written as 𝑝0(𝑡)𝑓[𝑎, 𝑥](𝑡 − 𝑎), where the polynomial 𝑝1(𝑡) is 

the interpolating polynomial of f at the node points 𝑥0, which is actually a in our case, and x. 

Now you put 𝑡 = 𝑥 by the interpolating condition. You can see that 𝑝1(𝑥) = 𝑓(𝑥). So that is 

the idea, why we have written 𝑓(𝑥) in this form. Why we are interested in this form, because 

from here you can write 𝑓(𝑥) − 𝑝0(𝑥) equal to something and then you take the integral you 

will precisely get your mathematical error. 
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So that is the idea, so now what you do is, you bring this 𝑝0 to the left hand side and 𝑓(𝑥) −

𝑝0(𝑥) = 𝑓[𝑎, 𝑥](𝑥 − 𝑎) and then you take the integration on both sides you will get the 

mathematical error on the left hand side equal to ∫ 𝑓[𝑎, 𝑥](𝑥 − 𝑎)𝑑𝑥 
𝑏

𝑎
. Now, let us see how to 

rewrite this integral in order to get our formula for the mathematical error. 
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For that, we will use the mean value theorem for integration. If you recall, you have 2 functions 

𝑓(𝑥) and 𝑔(𝑥) and if you know that 𝑔 ≥ 0 or equivalently you can also take 𝑔 ≤ 0, then you 

can write ∫ 𝑓(𝑥)𝑔(𝑥)
𝑏

𝑎
𝑑𝑥 as 𝑓(ξ) ∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎
. So, you can bring the function f outside the 

integral by appropriately choosing the ξ, where ξ is some number lying between a and b. 

 

So, that is what the mean value theorem for integration says. Now you can see that (𝑥 − 𝑎) >

0, because we have chosen x in the interval (𝑎, 𝑏] and a is excluded in the interval. Therefore, 



this is greater than or equal to 0 so you can just put the divided difference of f at the nodes a and 

x in the place of f in the theorem, and put (𝑥 − 𝑎) in the place of g in the theorem, you can see 

that the first term of the integrand will come out of the integral with the unknown ξ and then 

you are left out with only this integral which can be easily integrated.  
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Now again, you can see by the definition of the divided difference this is nothing but 
𝑓(ξ)−𝑓(𝑎)

ξ−𝑎
. 

Again, you can put the mean value theorem for differentiation and you can say that there exists 

an η such that this is equal to 𝑓′(η). So that is precisely the mean value theorem for derivatives 

and I am just putting this in this place to get my mathematical error equal to 𝑓′(η) and then I 

am evaluating this integral and then writing it here as 
(𝑏−𝑎)2

2
. 

 

So, this is what the mathematical error expression that we wanted to prove and we have achieved 

it, and this completes the proof of the theorem. So this is all about the rectangle rule. Now it is 

very simple for you to evaluate an approximate value of the integral through rectangle rule. You 

simply have to use this formula. Let us try to change the position of the node. If you recall, in 

the rectangle rule we have taken the node 𝑥0 as a.  

 

Now you can choose that 𝑥0 as any point in the interval [𝑎, 𝑏]. In particular, you can take b as 

the node, then you will get another method and here we will take 𝑥0 equal to the midpoint of 

the interval [𝑎, 𝑏] and we will get an important formula called midpoint rule. 
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So in midpoint rule, we will only take 𝑥0 =
𝑎+𝑏

2
, that is the only difference in the midpoint rule. 

Otherwise we are taking n = 0 and thereby we are approximating the function f by the 

interpolating polynomial of degree 0. But to construct 𝑝0 in the rectangle rule we have taken 

the node as a, now we are taking the node as 
𝑎+𝑏

2
. You can clearly see that choice of 𝑥0 will give 

us this formula and this is called the midpoint rule. 
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I leave it to you to see the geometrical interpretation of the midpoint rule and also, I leave it to 

you to derive the mathematical error involved in the midpoint rule. 
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The next is a composite rectangle rule. What is the idea of composite rectangle rule? If you 

recall, when we were discussing polynomial interpolations, we have introduced piecewise 

polynomial interpolations. Piecewise polynomial interpolations have their own advantages. The 

same idea can be adopted in the numerical integration also. Instead of approximating the 

function 𝑓(𝑥) by one single polynomial in the interval [𝑎, 𝑏], you can approximate it by 

piecewise polynomials. Then you will get a composite rule of whatever interpolating 

polynomial that you use. 
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Let us see in the case of rectangle rule, how to derive the composite version of the rectangle 

rule. For that, you have to break the interval [𝑎, 𝑏] into smaller subintervals. Remember this is 

what we do in the piecewise linear or any piecewise interpolating polynomial. First we will 

subdivide the given interval into some n number of points and then in each piece, we will put 

an interpolating polynomial of certain degrees, so that is the idea.  



 

Similarly, here also we will break the interval into smaller subintervals and then apply the 

rectangle rule on each subinterval. I hope the idea is clear, it is a very simple idea. Let us derive 

the formula in general. 
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First, you have to break this interval into some n number of subintervals. For that, we will define 

our h, that is the length of each subinterval. For the sake of simplicity, we will take the 

subintervals with equal length as ℎ =
𝑏−𝑎

𝑛
 and then we will define the partition points that is the 

nodes 𝑥𝑗 = 𝑎 + 𝑗ℎ, where 𝑗 = 0, 1, 2, ⋯ , 𝑛. These are the nodes, but now we will not put one 

interpolating polynomial in the entire interval. 

 

But we will put polynomial of degree 0 in each subinterval and then we will integrate them. 

Now, what we will do is, we have this integral. This is what we want to evaluate now. We will 

break that interval into n pieces. For that, we will first write a, which is equal to 𝑥0 and b is 𝑥𝑛., 

just for the convenience and then we will go to write this integral as the sum of the integrals 

over the subinterval. So, this is a very elementary property of the integration. 
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Now, what you do is, you go to put the rectangle rule on each of the subintervals that is you 

take each of this integral and put the rectangle rule. Remember, rectangle rule is (𝑏 − 𝑎) here b 

is 𝑥𝑗+1 and a is 𝑥𝑗, and the difference is precisely ℎ𝑓(𝑥0) is what we have defined in the 

rectangle rule. Here, 𝑥0 means the lower limit in the integral and you have to evaluate the 

function f at this lower limit and that is what is sitting here. 

 

Therefore, each integral in this sum is approximated by this quantity and thereby, we have the 

formula like this and this is the composite rectangle rule. Next, we will see how to derive a 

quadrature formula using linear interpolating polynomial and we will also see how to derive 

quadrature formula with a quadratic interpolating polynomial. We will continue our discussion 

in the next class. Thank you for your attention. 

 


