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Polynomial Interpolation: Cubic Spline Interpolation 

 

Hi, we are discussing piecewise polynomial interpolations. We have seen that piecewise 

polynomial interpolations give good approximations to our functions. However, they are not 

differentiable at the node points. In order to rectify this disadvantage, in this lecture we will 

discuss another type of piecewise polynomial interpolations called spline interpolations. We 

will first define spline interpolations and then we will learn to construct Cubic Spline 

Interpolation of a given function. 
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Let us see what is mean by spline interpolating function. A spline interpolation function of 

degree d at the nodes 𝑥0, 𝑥1, ⋯ , 𝑥𝑛 for a given function f is a function which we denote by 𝑠(𝑥) 

with the following properties. Note that the degree of this plane is nothing to do with the 

number of nodes that are chosen. In polynomial interpolation the degree of the interpolating 

polynomial depends on the number of nodes that is chosen.  

 

So, we should not get confused with the degree of the spline with the degree of the interpolating 

polynomials. Let us go to see what are all the properties that this function s should satisfy in 

order to be spline interpolating function of the given function f at these node points? The first 



property is that when you restrict 𝑠(𝑥) to each sub interval [𝑥𝑖−1, 𝑥𝑖], then the function 𝑠(𝑥) 

should be a polynomial of degree less than or equal to d. 

 

Up to here, you can see that 𝑠(𝑥) is a piecewise polynomial. And of course, if you also impose 

the interpolation condition then it will become a piecewise polynomial interpolation that is 

what we have learned in one of our previous lectures. In addition to that, spline also demands 

certain smoothness of the function s in the entire interval [𝑎, 𝑏].  

 

Remember, since s is a polynomial in each of the sub intervals. This smoothness should be 

mainly achieved on the node points 𝑥𝑖 's. However, as a definition, we say that 𝑠(𝑥) is 

continuously differentiable up to order d – 1 in the interval [𝑎, 𝑏] in which we are interested in 

approximating the function f by this 𝑠𝑝𝑙𝑖𝑛𝑒. And the last condition is of course, the 

interpolation condition that the function s should satisfy the interpolation condition with the 

function f at all the node points. 

 

Therefore, the first condition and the third condition together will say that s is a piecewise 

polynomial interpolation and the additional condition that it should be d – 1 times continuously 

differentiable on the interval [𝑥0, 𝑥1] is what is demanded in addition to the piecewise 

polynomial interpolation. In our course we will restrict ourselves to d = 3 in which case we call 

this plane as cubic spline interpolation. 

 

We will use a rather direct method to construct cubic splines. There are also other methods 

with which we can also construct higher degree spline interpolations. But we will only restrict 

to this simple case. 
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Let us see how to construct cubic spline interpolation. Remember we are given n + 1 node 

points 𝑥0, 𝑥1, ⋯ , 𝑥𝑛. Let us have a notation 𝑀𝑖 to denote the second derivative of s at the ith 

node point 𝑥𝑖. And the idea is to first obtain an expression for 𝑠(𝑥) in terms of 𝑀𝑖 's and then 

we will go to find precisely the values of these 𝑀𝑖’s. Now, once you take this notation, you can 

see that since s is a cubic polynomial in the interval [𝑥𝑖−1, 𝑥𝑖] you can see that 𝑠′′(𝑥)  is a linear 

polynomial on this interval.  

 

Therefore, you can easily find the equation for 𝑠′′ in the interval [𝑥𝑖−1, 𝑥𝑖] because we know 

that it is a straight line joining the points [𝑥𝑖−1, 𝑀𝑖−1] and [𝑥𝑖 , 𝑀𝑖]. With, this you can 

immediately write the expression for 𝑠′′(𝑥) like this for all x in the interval [𝑥𝑖−1, 𝑥𝑖]. Now, 

once you have this, you can get 𝑠(𝑥) by integrating 𝑠′′ twice. 
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So that is what we will do we will integrate 𝑠′′ two times with respect to x and that gives us 

this expression. Note that when you integrate for the first time, you will get an integrating 

constant because it is an indefinite integral. We will denote it by 𝐾1 and then, when you go to 

integrate it for the second time, we will get another integrating constant which we will denote 

by 𝐾2. 

 

Therefore, in the interval [𝑥𝑖−1, 𝑥𝑖] you need to now find 𝐾1, 𝐾2, 𝑀𝑖−1 and 𝑀𝑖 there are four 

unknowns to be determined in the interval [𝑥𝑖−1, 𝑥𝑖]. And we have to do this in each of the sub 

intervals. Let us first try to find 𝐾1 and 𝐾2. Remember, how are we going to find all these 

unknowns. We, of course, have certain conditions imposed in the definition of spline 

interpolation. One is it is a polynomial of degree d in each of the sub intervals. 

 

In our case d = 3 so, we have already used the condition that is s is a cubic polynomial in each 

of the sub intervals. We have already used that condition in order to arrive at this expression 

for s in each sub interval. Now, what are all the other conditions we have? We have to use the 

interpolation conditions at the node points in this interval. The node points are 𝑥𝑖−1 and 𝑥𝑖 and 

we have certain smoothness conditions also. Let us see how to use these conditions in order to 

obtain all these unknowns. 
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First, let us use the interpolation condition at the node points 𝑥𝑖 and 𝑥𝑖−1. So, if you put 𝑥 =

𝑥𝑖−1 then, on the left hand side you will have 𝑓(𝑥𝑖−1) which is assumed to be known to us. 

And now, you have to put 𝑥𝑖−1 here and 𝑥𝑖−1 here that will make the second term 0 and you 



will have 𝑥𝑖−1 here. Similarly, you have another equation. When you put 𝑥 = 𝑥𝑖 and that will 

make this first term to become 0 but you will have the second term + 𝐾1𝑥𝑖 + 𝐾2.  

 

So, you have two equations with of course, four unknowns. But now, our aim is to only find 

𝐾1 and 𝐾2 in terms of 𝑀𝑖 and 𝑀𝑖−1. Therefore, we will not touch upon this 𝑀𝑖’s while 

evaluating 𝐾1 and 𝐾2. So, we will just treat 𝐾1 and 𝐾2 as unknowns and we will solve this linear 

system of two equations with unknowns as 𝐾1 and 𝐾2. 
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And you can get 𝐾1 as this expression and 𝐾2 as this expression. So, you can easily check these 

conditions. Therefore, we got two unknowns 𝐾1 and 𝐾2, by imposing the interpolation 

conditions. Now, we have to get 𝑀𝑖’s that is 𝑀𝑖 and 𝑀𝑖−1 in the interval [𝑥𝑖−1, 𝑥𝑖]. How are we 

going to do that? 
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Well, for that let us consider the expression for 𝑠(𝑥). Now, we have eliminated 𝐾1 and 𝐾2 in 

the expression of s by substituting these two expressions into it and we got this expression. In 

this we are yet to find 𝑀𝑖−1 and 𝑀𝑖. 
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And we will use the continuity of 𝑠′(𝑥). Remember we have used the fact that s is a cubic 

polynomial. We also use the fact that 𝑠′′ is continuous. How we did that? Because that is the 

way we have constructed 𝑠′′. You can see that 𝑠′′ coincides at the boundary points because at 

𝑥𝑖 whether you approach from this side or this side 𝑠′′(𝑥𝑖) has to be 𝑀𝑖. 

 

So, in that way the continuity of 𝑠′′ is already used in this step and we have used s is a cubic 

polynomial. That is how we have taken the expression for 𝑠′′ as a straight line joining two 



points. And we also used the condition that it is an interpolating polynomial. So that is how we 

got 𝐾1 and 𝐾2. Now, we are left out with only one condition that 𝑠′ is continuous. 

 

We will use this condition in order to get the values of 𝑀𝑖 and 𝑀𝑖−1. Let us see how to do that. 

What you do is at every node 𝑥𝑖 you have a polynomial from this side and you have another 

polynomial from this side. Because s is a piecewise polynomial interpolation. Therefore, in 

each sub interval [𝑥𝑖−1, 𝑥𝑖] and [𝑥𝑖 , 𝑥𝑖+1] you have different polynomials. And now, you take 

this polynomial, say 𝑝1 and 𝑝2. 

 

And you find the derivative of these polynomials and then you have to equate them in order to 

achieve the continuity of 𝑝′ at this node. So, what you do is you have s in this interval that is 

given by this expression in the interval [𝑥𝑖−1, 𝑥𝑖]. Similarly, you write 𝑠(𝑥) in this interval then 

take the derivative of s in these two intervals and then equate them. So, you just have to equate 

them and this has to be done for all the sub intervals. 
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Note that you can do this at 𝑥1 because you have the interval [𝑥0, 𝑥1] and [𝑥1, 𝑥2]. You can 

approach from the left and you can approach from the right for the function 𝑠′ to get the 

condition at this point. Similarly, to get a condition at 𝑥1 you approach from left and you 

approach from right from this interval [𝑥1, 𝑥2]. And that will give you one condition here. 

Similarly, you can get up to 𝑥𝑛−1. 

 

Note that at the points 𝑥0 and 𝑥𝑛 you cannot impose this idea because we only have the 

polynomial approaching from one side. From the other side, you do not have a polynomial to 



obtain 𝑀0 and similarly you do not have the polynomial to approach from the right in order to 

get 𝑀𝑛. So, therefore, 𝑀0 and 𝑀𝑛 are excluded from this idea. 

 

Otherwise, for all i = 1 to n – 1, you can find the corresponding values or 𝑀𝑖 using this 

continuity property of 𝑠′. 
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And you can see that imposing the continuity property of 𝑠′ at each node 𝑥1, 𝑥2, ⋯ , 𝑥𝑛−1will 

give us a tridiagonal system of linear equations. You can derive and see. I will not show you 

the derivation. It is little lengthy but very simple to do. I leave it to you to see how to bring this 

tri diagonal system. You can see that for each i you have non zero entries only on the tridiagonal 

positions. 

 

Otherwise, all other entries are zeros and this is a tridiagonal system with unknowns as 

𝑀1, 𝑀2, 𝑀𝑛−1. By solving this tri-diagonal system, we can get all these constants except 𝑀0 

and 𝑀𝑛. We cannot get them using this idea. 
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So, what we will do is we will take 𝑀0 = 0 and 𝑀𝑛 = 0. There is no reason for why we choose 

like this. This is the way we choose. The constants 𝑀0 and 𝑀𝑛 and we will call the resulting 

plane as natural spline. So, this is the construction of cubic naturals spline interpolation of a 

given function. Cubic spline, because we have imposed the smoothness of degree 2 at the nodes 

and also from the way it is constructed. 

 

You can see that s is a piecewise cubic polynomial. And the name natural is because we have 

chosen 𝑀0 and 𝑀𝑛 like this. There are other ways to choose these constants, different way of 

choosing these constants will lead to different splines. But natural spline means you have to 

choose 𝑀0 and 𝑀𝑛 as 0. There is no reason for why it is like this. This is the way in the literature 

people have used it. 
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Let us see an example. Let us try to construct the natural cubic spline interpolation for the data 

set given to us. You can see, there are four node points and the value of the function at these 

node points are given like this. From here you can see that the function that we are considering 

is 𝑓(𝑥) =
1

𝑥
. Let us see how to construct the natural cubic spline.  
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Since it is natural, first thing is you simply take 𝑀0 = 𝑀3 = 0. Here n = 3 because we start 

from 𝑥0 then 𝑥1, 𝑥2 and 𝑥3. So, n = 3 so, you have to take 𝑀3 as 0 but you have to find 𝑀1 and 

𝑀2 by constructing a system of linear equations. It is just a 2 by 2 system. Therefore, there is 

no clear tridiagonal structure is visible in this case. However, to construct the system you can 

use this formula which we have derived in our construction. 

 

You just plug in the values of 𝑥𝑖 's and 𝑓(𝑥𝑖)’s, given in this data set. You can see that for each 

I, this is just one and you have the corresponding values for this Therefore, for i = 1 and 2 you 

can get two equations for 𝑀1 and 𝑀2. 
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They are linear equations, given by this, for i = 1 and this equation for i = 2. You can see that 

it is a linear system with two equations. Since it is only 2 you do not see this tridiagonal 

structure in this system. However, you can easily solve this system by using Gaussian 

elimination method also. 
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And thereby you will get the value of 𝑀1 and 𝑀2. Already, you have the values of 𝑀0 and 𝑀3. 

Therefore, you obtained all the constants 𝑀0, 𝑀1, 𝑀2 and 𝑀3. Now, you have to plug in those 

constants into the expression of the cubic spline interpolation. Remember you have to do this 

in each of the sub internals from [𝑥0, 𝑥1]. You have to plug in 𝑀0, 𝑀1 and you will get this 

cubic polynomial. 

 



And similarly, you have to do it for the interval [𝑥1, 𝑥2] that is [2,3]. Here you have to plug in 

𝑀1 and 𝑀2 and you will get this polynomial. And similarly, in the last sub interval you get the 

polynomial as this. Here you can see that s is a piecewise cubic polynomial, here cubic means 

the degree is at most 3 not exactly 3. So, this is how we generally define the interpolating 

polynomials.  

 

So, in the first interval it is a cubic polynomial in the second interval also, it is a cubic 

polynomial. But in the third interval it is only a linear polynomial but that does not matter. We 

want s to be a polynomial of degree less than or equal to 3 in each of the sub interval. Therefore, 

this is fine and this is the natural cubic spline interpolation for the given data set. With this, we 

will close this class. Thank you for your attention. 


