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Hi, in the previous lecture, we have seen that the Interpolating Polynomials may give poor 

approximation. If we have too many node points, especially if the node points are equally 

spaced, we may observe a visible oscillation in the graph of the interpolating polynomial near 

the boundaries of the interval of interest. One way to improve the approximation is to go for 

piecewise polynomial interpolations. 

 

We have learned piecewise polynomial interpolations in our previous lecture and we have seen 

that there is still a drawback in this approach. What is the drawback? Well, the disadvantage is 

that piecewise polynomial interpolations using Lagrange’s or Newton's formula, can be non-

differentiable at the node points. We can overcome this difficulty of loss of smoothness by 

imposing more smoothness conditions on the interpolant at the node points. 

 

There are at least two ways exist to construct piecewise polynomial interpolations with more 

smoothness at the node points. One approach is to use piecewise Hermite interpolation and 

another one is spline interpolation. In this lecture we will learn the Hermite interpolation and 

postpone the discussion on spline interpolation to the following lecture. 
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Let us first define the problem of our interest. We are given n distinct nodes 𝑥0, 𝑥1, ⋯ , 𝑥𝑛 and 

we also assume that the given function is sufficiently smooth. Well, before defining our 

problem, let us recall what we did so far in polynomial interpolations, we seek a polynomial of 

degree less than or equal to n such that the polynomial value at the node points coincides with 

the value of the functions at the corresponding node points.  

 

This is the interpolation condition that we have demanded on our interpolating polynomial and 

we got a unique polynomial of degree less than or equal to n when we are given n + 1 distinct 

nodes. Now, in order to get more smoothness at the node points, we will have to demand more 

smoothness at the node points. For this reason, we will assume that f is sufficiently smooth. 

 

And we will look for a polynomial 𝐻(𝑥) such that the polynomial value at each node point 𝑥𝑗 

coincides with the function value at 𝑥𝑗. That is in this expression, I am talking about when you 

take k = 0 that will look something like this and in addition to this interpolation condition, we 

now also demand that our polynomials derivative of certain order that is, let us denote it by 𝑚𝑗 

for each j.  

 

And we will demand the value of the derivative of the polynomial should coincide with the 

value of the corresponding derivative of the given function at the node point 𝑥𝑗. So, this is what 

we will demand and at every node point we may have different order of smoothness included 

in this condition. This is a general problem that we pose and we will ask the question whether 

we can find such a polynomial for a given set of n + 1 nodes. 

 

Of course, the polynomial has to be of certain degree. We will come to that point little later 

and such a polynomial is generally called the osculatory interpolation or it is also referred to 

as the general Hermite interpolation. 
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Let us see an example which is familiar to us, the Taylor polynomial. Let 𝑓 ∈ 𝐶1[𝑎, 𝑏]. Then 

we know that the Taylor's polynomial of degree one about some point 𝑥0 ∈ [𝑎, 𝑏] is given by 

𝑇1(𝑥) = 𝑓(𝑥0) + 𝑓′(𝑥0)(𝑥 − 𝑥0). Now, let us take 𝑥 = 𝑥0 and see what happens. You can see 

that if we take 𝑥 = 𝑥0 then 𝑇1(𝑥0) = 𝑓(𝑥0). 

 

And in fact, we can also see that 𝑇1
′(𝑥0) = 𝑓′(𝑥0). Now, let us compare this property with the 

definition of osculatory interpolation that we have defined in the previous slide. In the case of 

Taylor's polynomial of degree one, we have only 1 node that is 𝑥0. And in this polynomial that 

is in the Taylor polynomial of degree 1 we have taken 𝑚0 = 1. 

 

And therefore, our condition now has to be 𝐻(𝑥0) = 𝑓(𝑥0) that corresponds to k = 0 and 

𝐻′(𝑥0) = 𝑓′(𝑥0). So, this is what we have obtained from the Taylor's polynomial of degree 1. 

Therefore, Taylor's polynomial of degree 1 is an example for the osculatory interpolation at 

one single node 𝑥0 with order one at that node.  
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We can in fact, increase the smoothness condition and the node 𝑥0 by 1 more. For this, we need 

to assume that the function f is a 𝐶2 function on the interval [𝑎, 𝑏]. Then we can see that the 

Taylor polynomial of degree 2 about the point 𝑥0 in the interval [𝑎, 𝑏] is given like this. Now, 

the question is this an osculatory interpolation at the point 𝑥0, if so, what is the order? 

 

Let us see, it is not very difficult for us to see that if we take 𝑥 = 𝑥0 in this expression then 

𝑇2(𝑥0) = 𝑓(𝑥0). Then you differentiate 𝑇2 once with respect to x and then put 𝑥 = 𝑥0, you can 

see that 𝑇2
′(𝑥0) = 𝑓′(𝑥0). Similarly, you differentiate 𝑇2 twice with respect to x and then 

substitute 𝑥 = 𝑥0, you can see that 𝑇2
′′(𝑥0) = 𝑓′′(𝑥0). 

 

Therefore, you can again go back to the definition of osculatory interpolations and see that 𝑇2 

is an osculatory interpolation for the function f with single node 𝑥0 with order 2 at 𝑥0. That is 

𝑚0 = 2 as per the notations introduced in our definition of osculatory interpolations. 
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Well in our course, we will restrict ourselves to a particular case of the osculatory interpolation 

and we refer this particular case as the Hermite interpolation. What is this particular case? Well 

given as 𝐶1 function defined on an interval [𝑎, 𝑏], let us consider n + 1 node points in an interval 

[𝑎, 𝑏]. Now, the problem is to find a polynomial 𝐻2𝑛+1(𝑥). Well, I will not always say this 

suffix 2n + 1, I will just say 𝐻(𝑥). 

 

This polynomial 𝐻(𝑥) is of degree less than or equal to 2n + 1. Such that 𝐻(𝑥𝑗) = 𝑓(𝑥𝑗). That 

is the interpolation condition of order 0 and then we will also impose the interpolation condition 

of order one, that is 𝐻′(𝑥𝑗) = 𝑓′(𝑥𝑗). And this should happen at all the given node points. Can 

you see why we demand the degree of the polynomial H to be less than or equal to 2n + 1? 

 

You can see that there are n + 1 conditions from the function value and another n + 1 conditions 

from the derivative of f. Therefore, totally we have 2n + 2 conditions. Therefore, you have to 

have the degree of the polynomial H as 2n + 1. Because in order to achieve these 2n + 2 

conditions, we have to have the degree of the polynomial as something like 𝑎0 + 𝑎1𝑥 +

𝑎2𝑥2  + up to that many terms that results in 2n + 2 unknowns. 

 

For that you need the degree of the polynomial to be 2n + 1 so that you have 2n + 2 unknowns 

𝑎0, 𝑎1, 𝑎2, ⋯ , 𝑎2𝑛+1. That is why we need the degree of the polynomial to be something less 

than or equal to 2n + 1. Recall that this kind of condition is not something new to us. The same 

idea was also adopted when we were constructing the polynomial interpolation in our previous 

lectures.  



 

The same idea now, but we have some extra conditions that forced us to increase the degree of 

the polynomial. There is nothing new in this idea. Note that we are only demanding order 1 

here at each node. Therefore, if you compare the definition of oscillating interpolation in our 

previous slide, what we are doing here is, we are taking 𝑚𝑗 = 1 for all j = 0, 1, 2 up to n. At 

every node we are only demanding the smoothness of order 1. 

 

In that way, this problem is a particular problem of finding osculatory interpolation in general. 

But in our course, we will call this particular problem as Hermite interpolation. Now, the 

question is whether Hermite interpolating polynomial exists for a given set of data.  

(Refer Slide Time: 13:27) 

 

Well first, let us see how the data set should look like recall that when we were constructing 

polynomial interpolations using Lagrange and Newton's form, we had only two coordinates x 

and y. But we need one more extra coordinate now to construct the Hermite interpolation that 

corresponds to the value of the derivative of the given function. Well, here I have only given 

the value of the function as 𝑦0, 𝑦1, ⋯ , 𝑦𝑛. 

 

And the values of the derivative of the function as 𝑧0, 𝑧1, ⋯ , 𝑧𝑛. Because these values may not 

come from some function. In general, they may come from any other source something like 

they may come from some experiments or so on. For that reason, I have just posed the data set 

in a general notation. Well once we provide this data set then our theorem says that we can 

construct a unique Hermite interpolating polynomial H of degree less than or equal to 2n + 1 



with the required interpolation conditions as given here which we have shown in our previous 

slide itself.  

 

Now, I am just using a different notation here. Instead of 𝑓(𝑥𝑗), I am just using 𝑦𝑗 and instead 

of 𝑓′(𝑥𝑗), I am using the notation 𝑧𝑗. 
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In fact, the theorem also gives us the explicit form of the interpolating polynomial and this 

explicit form is given like this. The first term is the linear combination of ℎ𝑖 's where ℎ𝑖 's are 

given like this. And you can see that ℎ𝑖’s involves square of the Lagrange polynomials. Recall 

that 𝑙𝑖(𝑥) is the ith Lagrange polynomial. You should go back to our previous lectures and 

recall how this Lagrange polynomials are defined. 

 

Now, ℎ𝑖 's are defined in terms of the square of Lagrange polynomials and also it involves the 

first order derivative of the Lagrange polynomial. And you can see that the first term is written 

as the linear combination of 𝑥𝑖’s involving the function value 𝑦𝑖’s. The second term is written 

as the linear combination of ℎ̃𝑖 and also it involves the value of 𝑓′ at the nodes denoted by 𝑧𝑖’s, 

here ℎ̃𝑖(𝑥) is given by this formula. 

 

Again, you can observe that the square of Lagrange polynomial is involved in the definition of 

ℎ̃𝑖 also. Well, in this way the Hermite interpolation is written in terms of Lagrange polynomials. 

We can also write Hermite interpolation using Newton's divided difference. We will not cover 

this in our course but interested students can learn how to write Hermite interpolation in terms 



of Newton's divided differences, from many books for instance, you can see Burden and Faires 

for more details.  

 

Well, let us prove this theorem. It is not very difficult to observe that H is a polynomial of 

degree less than or equal to 2n + 1. Why is it so? Well, you can see that each ℎ𝑖’s and also ℎ̃𝑖’s 

or polynomials of degree 2n + 1. Why? Because 𝑙𝑖’s or polynomials of degree n. And now you 

are squaring them therefore 𝑙𝑖
2 is a polynomial of degree 2n. 

 

And you have one more degree coming from here. Therefore, ℎ𝑖 is a polynomial of degree, 

something 2n + 1. Similarly, here also, you can see that 𝑙𝑖’s of polynomials of degree n and 

since you are squaring this will be a polynomial of degree 2n. And then you have one more 

degree coming from here that will clearly tell that H is a polynomial of degree less than or 

equal to 2n + 1. 

 

Now, our aim is to further show that the expression given like this is indeed the Hermite 

polynomial. 

(Refer Slide Time: 18:57) 

 

For that we have to show that the polynomial defined in our slide satisfies these two conditions 

at each node point. 
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Let us see how to prove this. Let us take the first interpolation condition of zeroth order that is 

𝐻(𝑥𝑗) = 𝑦𝑗, for j = 0, 1 up to n. Let us see how to prove this recall in one of our previous 

lectures, we have proved this important property of the Lagrange polynomial. Let us use this 

property to prove this interpolation condition, how to do that. Well, you can use this property 

of the Lagrange polynomial directly into the definition of ℎ𝑖 and ℎ̃𝑖 

 

And you can see that ℎ𝑖(𝑥𝑗) also satisfies the same property as the Lagrange polynomial. And 

also, you can see that ℎ̃𝑖(𝑥𝑗) = 0 for each j. Now, going back to the expression of H that we 

have proposed in our statement, you can see that 𝐻(𝑥𝑗) = ∑ 𝑦𝑖ℎ𝑖(𝑥𝑗)𝑛
𝑖=0 . And you can see that 

ℎ𝑖(𝑥𝑗) = 1, only when 𝑖 = 𝑗. All other terms will vanish in this sum leaving only 𝑦𝑗 and what 

happens to the second term. 

 

Well, the second term will vanish fully. Therefore, our first interpolation condition is satisfied 

by the H that we have defined in the statement of our theorem. Therefore, the interpolation 

conditions of order zero is proved. 
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Now. Let us move on to prove the interpolation condition of order 1. For this, let us first 

differentiate the given expression of H with respect to x. To get this expression let us first 

understand how ℎ𝑖
′ and ℎ𝑖

′̃ are obtained, will just differentiate ℎ𝑖 with respect to x. We get this 

expression, you can see that keeping this and differentiating this gives us the first term. 

 

And similarly, keeping this term and differentiating the second one gives us this term. Well, 

let us not disturb this path because this is not required in our proof. Therefore, we will not try 

to compute thi,s we will keep it as it is. And see what happens to this expression when we put 

𝑥 = 𝑥𝑗. 
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You can see that when you put 𝑥 = 𝑥𝑗 then this term vanishes for all 𝑖 ≠ 𝑗. For 𝑖 = 𝑗, you will 

have −2𝑙𝑖
′(𝑥𝑖). Because this term will become 1 in that case and let us see what happens to the 



second term. Again, the second term will vanish for all 𝑖 ≠ 𝑗. Here also it vanishes for all 𝑖 ≠

𝑗. And what happens when we put 𝑖 = 𝑗. Then again, this part of the term will vanish because 

you have j here and i here, when 𝑗 = 𝑖 this term vanishes. 

 

And you will have only the contribution coming from the first term which will be + 2𝑙𝑖(𝑥𝑖) 

which will be 𝑦1𝑙𝑖
′(𝑥𝑖). So, your first term is −2𝑙𝑖

′(𝑥𝑖), the second term is +2𝑙𝑖
′(𝑥𝑖), they will 

get cancelled and you will have 0. 
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Therefore, you can see that the first term of 𝐻′ now becomes 0 and we are left out only with 

the second term. Now, let us see what happens to ℎ𝑖
′̃(𝑥𝑗). For that first, we have to differentiate 

ℎ̃𝑖 with respect to x whose expression is given like this, when you differentiate it, you get this 

expression. Again, in this we have to put 𝑥 = 𝑥𝑗 and let us see what happens. 
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When we put 𝑥 = 𝑥𝑗 we get this expression. You can see that this is equal to 1, if 𝑖 = 𝑗 and it 

vanishes for all 𝑖 ≠ 𝑗. And then what happens to the second term, well, for 𝑖 ≠ 𝑗 this part will 

vanish when 𝑖 =  𝑗. This will not vanish but this will make this second term to vanish. 

Therefore, as a whole the second term will vanish for all j = 0, 1 up to n. 
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Whereas from the first term you will have ℎ𝑖
′̃(𝑥𝑗) = 1, is  𝑖 = 𝑗 and 0 if 𝑖 ≠ 𝑗. 
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From here, you can see that 𝐻′(𝑥𝑗) = 𝑧𝑗 and that proves the second level of interpolation 

conditions also.  
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Thus, we have proved the existence of the Hermite interpolating polynomial for a given data 

set and the formula is also given to us explicitly. 
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Now, let us prove the uniqueness of the Hermite interpolating polynomial for a given data set. 

If possible, we will assume that there exists another polynomial of degree less than or equal to 

2n + 1 with the same condition. And let us see what happens, remember, we already constructed 

a polynomial in this form and now what we are doing is we are assuming that there is another 

polynomial with the same property. 

 

Now what we have to show? We have to show that the polynomial that we constructed should 

be the same as the polynomial that comes from somewhere. So that is what we want to show. 

If you show that then it means that this is the only form that you can have for the Hermite 

interpolation. Let us define 𝑟(𝑥) as the difference between these two polynomials. 

 

Therefore, in order to prove that these polynomials are equal for all x, we have to prove that 

𝑟(𝑥) = 0 ∀𝑥. To do this let us first observe the following properties of 𝑟(𝑥). First, is that since 

both H and ℋ are polynomials of degree less than or equal to 2n + 1 you can see that 𝑟(𝑥) is 

also a polynomial of degree less than or equal to 2n + 1. Second thing is, since r is a polynomial 

of degree less than equal to 2n + 1, 𝑟′(𝑥) will be a polynomial of degree less than or equal to 

2n. 

 

Also, from the first set of interpolation conditions, we can see that 𝑟(𝑥) has n + 1 distinct roots 

which are precisely the distinct node points from our given data set. This is because at any node 

point 𝑥𝑗, 𝑟(𝑥𝑗) = 𝐻(𝑥𝑗) − ℋ(𝑥𝑗). But we know that 𝐻(𝑥𝑗) = 𝑦𝑗 and ℋ(𝑥𝑗) is also equal to 



𝑦𝑗. Therefore, they get cancel and you will have 𝑟(𝑥𝑗) = 0 and this happens for each j = 0, 1, 2 

up to n. 

 

Therefore, r has n + 1 distinct roots. Also, you can see that 𝑟′ has n + 1 distinct roots. Why? 

Again, you differentiate r with respect to x that will be 𝐻′(𝑥) − ℋ′(𝑥). Again, when you put 

𝑥 = 𝑥𝑗, you have the second set of interpolation conditions that will make 𝑟′(𝑥𝑗) also equal to 

0. Therefore, the polynomial 𝑟′(𝑥) will also have n + 1 distinct roots. 

 

Now, let us take this condition, that is 𝑟(𝑥) has n + 1 distinct roots and we will use the Roll’s 

theorem. That implies that 𝑟′(𝑥) will have at least n distinct roots. That is in between two node 

points, say 𝑥𝑗 and 𝑥𝑗+1 say, r is something like this. Then you can always find a point in between 

𝑥𝑗 and 𝑥𝑗+1, let us call this as ξ𝑗 at which 𝑟′(ξ𝑗) will be equal to 0. 

 

It means all this n roots which you found from the Rolle’s theorem, are different from the n + 

1 distinct roots which we have already from our data set. This ξ𝑗’s may not coincide with the 

node points that we have. In that way 𝑟′(𝑥) already has n + 1 distinct roots + now you have n 

distinct roots. Therefore, 𝑟′(𝑥) will have 2n + 1 distinct roots. 
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That is what I am saying here, 𝑟(𝑥) has n + 1 distinct roots implies 𝑟′ has at least n distinct 

roots different from the node points. How? well, using the Roll’s theorem and once you have 

this, you can see that 𝑟′(𝑥) has 2n + 1 distinct roots. What is the problem with that? Well, 𝑟′(𝑥) 

is a polynomial of degree less than or equal to 2n. But now it has 2n + 1 distinct roots. 



 

That implies that 𝑟′(𝑥) is a zero polynomial. That implies that 𝑟(𝑥) is a constant polynomial 

but we know that 𝑟(𝑥) has n + 1 distinct roots. In fact, if you know that 𝑟(𝑥) has one root, that 

is enough to say that this constant polynomial is equal to 0. Thus, we have proved that the 

polynomial 𝑟(𝑥) defined as 𝐻(𝑥) − ℋ(𝑥) is indeed a zero polynomial. That implies that 𝐻(𝑥) 

is equal to ℋ(𝑥) for all 𝑥 ∈ ℝ and this proves the uniqueness of the Hermite interpolation. 
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Let us take an example and construct the Hermite polynomial for this given data set. 

Remember, we have two distinct nodes 𝑥0 and 𝑥1. Which implies that we have n = 1 and 

therefore, the degree of the Hermite polynomial is 2n + 1 which is equal to 3. That is, we have 

to construct the cubic Hermite interpolating polynomial from the given data set. Let us recall 

the formula for 𝐻3 from our theorem. 

 

𝐻3 is given like this where now we have n = 1 and ℎ𝑖’s and ℎ̃𝑖 are given, as they are in the 

theorem. To compute the cubic Hermite interpolating polynomial, we first have to find  ℎ𝑖 and 

ℎ̃𝑖 and then we can write them in this form.  
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Remember, in order to find ℎ𝑖 and ℎ̃𝑖, first we have to find the Lagrange polynomials. 

Therefore, we will start with computing the Lagrange polynomials. As a first step, we will 

compute 𝑙0(𝑥). Remember this is your 𝑥0 and this is your 𝑥1. Therefore, 𝑙0(𝑥) which is equal 

to 
𝑥−𝑥1

𝑥0−𝑥1
 is given like this. Similarly, 𝑙1(𝑥) which is equal to 

𝑥−𝑥0

𝑥1−𝑥0
 is given like this. 

 

Now, we have to construct the cubic Hermite polynomial from this data set. Let us recall the 

formula for ℎ𝑖(𝑥) which is given like this, where i = 0 and 1. For i = 0, ℎ0(𝑥) is written in 

terms of 𝑙0 which is given like this and for i = 1, ℎ1(𝑥) is written in terms of 𝑙1(𝑥) which is 

given like this. Remember we have to also differentiate the Lagrange polynomials in order to 

substitute here.  

 

Let us see how to get ℎ0(𝑥), ℎ0(𝑥) = (1 − 2(𝑥 − 𝑥0)). Therefore, you have x + 2 and then 

you have 𝑙0
′ (−2). You can obtain that from here and you can write it here. And finally, this 

term will become like this into 𝑙0
2(𝑥). Similarly, you can get the expression for ℎ1(𝑥) also and 

that is given by this. Once we have this let us now go to find ℎ̃𝑖. How ℎ̃𝑖 is given? 

 

Recall the formula for ℎ̃𝑖 is this and again for ℎ̃0, we have to use 𝑙0(𝑥) and similarly, for ℎ̃1 

you have to use 𝑙1(𝑥). And for ℎ̃0(𝑥), we obtain the formula like this and ℎ̃1(𝑥) is obtained 

like this. Now, we have ℎ0, ℎ1, ℎ̃0 and ℎ̃1. Therefore, we can now go to write the cubic Hermite 

interpolation polynomial. 

 



Remember the formula is given like this, you have 𝑦0ℎ0 + 𝑦1ℎ1 + 𝑧0ℎ̃0 + 𝑧1ℎ̃1. What is 𝑦0? 

This is 𝑦0 this is 𝑦1. This is 𝑧0 and this is 𝑧1. So, you have to substitute these values and you 

can leave it in this form or if you wish, you can also simplify it to see that it is indeed a 

polynomial of degree less than or equal to 3. 

 

Let us visualize 𝐻3 and in fact this data are taken from the sin function with the x values are 

taken in radians. 
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Here, the black solid line represents the graph of the sin function, this one and the red solid 

line, this one is the graph of the Hermite polynomial 𝐻3 that we have constructed just now. 

Note that from the given nodes 𝑥0 and 𝑥1 with only the function values, we will get the 

interpolating polynomial of degree less than or equal to 1 from the Lagrange form or Newton's 

form.  

 

But here with two node points, we got a cubic interpolating polynomial. Of course, we have to 

also provide the information of the value of the derivative of the function. That is the cost we 

are paying here but we are getting a higher degree polynomial with just two nodes. This is what 

we observe here. You can see that at the node points, the function, value and the polynomial 

value or coinciding. 

 

This is the first set of interpolation conditions and also you can see that at the node points, the 

slope of the polynomial and also the slope of the function are coinciding. This is the second 

level of the interpolation condition which is clearly visible in this graph.  
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Well, as a next example, let us consider three nodes and the corresponding function values and 

the values of the derivative. Again, I have taken these values from the sin function with 2 digit 

rounding. Note that, with this data set, we can obtain the fifth degree Hermite interpolating 

polynomial but my interest is to obtain the piecewise cubic Hermite interpolation. For this let 

us first give the data set in two pieces. 

 

The first piece has two nodes 𝑥0 and 𝑥1 and the corresponding function values and the 

derivative values. This will give us the corresponding cubic Hermite polynomial interpolation. 

Remember we have constructed this polynomial in our previous example. But now we will 

denote it by 𝐻3,1(𝑥) because this is the polynomial that is coming from the first piece of the 

given data.  

 

Now, let us take this second part of the data set. That is, the nodes 2 and 4 and their 

corresponding values of the function and the derivatives. Again, we can construct the cubic 

Hermite interpolation in a similar way, as we did in the last example and let us denote this 

Hermite interpolating polynomial by 𝐻3,2(𝑥). Because this polynomial is coming from the 

second piece of our data set. 

 

Now, we will join these two to get the piecewise cubic Hermite interpolation. Remember with 

the same node points with only the function values we can also obtain quadratic interpolating 

polynomial in the Lagrange or Newton form or we can also find piecewise linear polynomial 



interpolation. You can see that the piecewise linear interpolating polynomials with the same 

data set, can be given like this. 

 

Here 𝑝1,1(𝑥) is the linear interpolating polynomial written in the Lagrange form coming from 

the first piece of the data set. And 𝑝1,2(𝑥) is the linear interpolating polynomial, again written 

in the Lagrange form coming from the second piece of the given data set. Remember here we 

are only using the function values but not the derivative values to construct the Lagrange 

polynomials.  

 

The derivative values are used only for the Hermite polynomials. Again combining these two 

piece of linear polynomials, we can obtain the piecewise linear polynomial for the given data 

set and we also can obtain piecewise cubic Hermite interpolating polynomial for the given data 

set. 

(Refer Slide Time: 42:34) 

 

Let us try to see graphically how they look like? The blue solid line represents the piecewise 

linear polynomial interpolation. As expected, we can see that there is a sharp edge at the interior 

node of the linear piecewise polynomial interpolation. As remarked at the beginning of this 

lecture and also in our previous lecture, the piecewise linear polynomial interpolation is not 

differentiable at the interior node point.  

 

Whereas you can see that the cubic Hermite interpolation is coinciding with the slope of the 

function at the node points. That is at – 2 here, as well as at the node point 2 here. And similarly, 

the second piece that is 𝐻3,2 is again coinciding with the slope of the sin function at the point 



x = 2. And that makes the piecewise cubic Hermite interpolation to be at least 𝐶1 at the point , 

= 2 that is the interior node point. Whereas, as I told the piecewise linear interpolation has a 

sharp edge here.  

(Refer Slide Time: 44:06) 

 

So that is the main advantage of the Hermite interpolation. When we go to construct piecewise 

Hermite interpolation, we will gain one order of smoothness at the interior nodes, whereas this 

is not the case with the piecewise interpolation coming from the Lagrange’s or Newton's form 

of interpolation.  

 

As we remarked at the beginning of this lecture, there is another way to construct piecewise 

polynomial interpolation, with more smoothness condition at the node point called this spline 

interpolation. We will discuss spline interpolation in our next lecture. Thank you for your 

attention. 


