
Numerical Analysis 

Prof. S. Baskar 

Department of Mathematics 

Indian Institute of Technology, Bombay 

 

 Lecture - 40 

Polynomial Interpolation: Newton’s Divided Difference Formula 

 

Hi, we are learning polynomial interpolations for a given set of data. In this we have learned two 

ways to construct polynomial interpolations, one is using Lagrange form of interpolating 

polynomials and another one is the Newton's form of interpolating polynomials. In this we have 

seen that Lagrange form has a very nice structure and therefore it is suitable for theoretical studies.  

 

However, when it comes to computational purpose Lagrange is polynomial is not very efficient. 

And therefore, we have also introduced another form of interpolating polynomial that is Newton's 

form of interpolating polynomial. The last class we have seen that even Newton's form in the way 

we have formulated it, is not going to be that efficient when compared to the Lagrange form.  

 

This is because the coefficients of the polynomial which we denoted by a case are depending on 

the polynomials of lower degree and that makes even the Newton's form computationally more 

expensive. In this lecture we will introduce a concept called divided differences, these are precisely 

the coefficients in the Newton's form of the interpolating polynomial which can be written in a 

rather nice way that can be efficiently coded to get the coefficients more nicely.  
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Let us start our lecture with brief recall of what we learned in the last class on Newton's form of 

interpolating polynomial. We are given a data set with nodes 𝑥0, 𝑥1, ⋯ , 𝑥𝑛 which are distinct nodes 

and the corresponding values are given as the y coordinate. Just to introduce the divided differences 

notationally, it is more convenient to use these values as they are obtained as the function values.  

 

This is just for the notational purpose; therefore, we will assume that the 𝑦 values are generated 

from a function. If you recall the Newton's form of interpolating polynomial for the given set of 

data is given like this where 𝐴𝑘’s are obtained in terms of the lower degree polynomials.  
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Now we will just introduce a new notation 𝑓[𝑥0, 𝑥1, ⋯ , 𝑥𝑘] for the coefficients 𝐴𝑘, this is just a 

notation. With this notation it is more convenient for us to pose the formula that we want that is 

why we are introducing this notation and with this we can write 𝑓[𝑥1, 𝑥2, ⋯ , 𝑥𝑛] which is nothing 

but our 𝐴𝑛 in the Newton's form of interpolating polynomial and that can be written in terms of 

the lower order values and the formula is given like this. 

 

We will see this formula in more details in this lecture and we will in fact also derive this formula, 

I am just posing this formula here. There is an easy way to remember it to obtain this quantity what 

you have to do is you have to take 𝑓[𝑥0, 𝑥1, ⋯ , 𝑥𝑛] that is this, −𝑓[𝑥0, 𝑥1, ⋯ , 𝑥𝑛−1] divided by 

𝑥𝑛 − 𝑥0. What are these? These are precisely the divided differences; you have to start with say 

𝑓(𝑥0) which is nothing but the function value at 𝑥0.  

 

And similarly, 𝑓(𝑥1) is equal to the function value at 𝑥1 and so on. This is the zeroth order divided 

difference, whereas the first order divided difference 𝑓[𝑥0, 𝑥1] is written as per this formula 

𝑓(𝑥1)−𝑓(𝑥0)

𝑥1−𝑥0
 and similarly you can write 𝑓[𝑥1, 𝑥2] and so on. These are the first order divided 

difference, in this way recursively you can obtain the higher order divided differences starting 

from the zeroth order divided difference and finally you will reach the nth order divided difference. 

 

As this is called the nth order divided difference for the function f are these nodes. I hope you got 

an idea of how to obtain the nth order divided difference, you have to start from the zeroth order 

and you have to step by step compute these divided differences till you reach the higher order and 

all these divided differences with 𝑥0, 𝑥1, ⋯ , 𝑥𝑘 will appear as the coefficients in the Newton's form 

of interpolating polynomial. Let us see this in more details first.  
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Let us give a formal definition for divided differences, let 𝑥0, 𝑥1, ⋯ , 𝑥𝑛 be distinct nodes and let 

𝑝𝑛(𝑥)  be the polynomial interpolating the function f are these distinct nodes. Then the coefficient 

of 𝑥𝑛 in the polynomial 𝑝𝑛(𝑥) is called the nth order divided difference and it is denoted by this 

notation. If you recall when we were introducing the Newton's form of interpolating polynomials, 

we have used the notation 𝐴𝑛 for this.  

 

But now we have just changed the notation because this notation is more convenient for us to write 

the formula for this quantity and it is called the nth divided difference of the function f. 
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There is a very interesting and an important property of the divided difference, it is the symmetric 

property of the divided difference. The divided difference is a symmetric function of its argument. 

What it means? That is suppose you are given n + 1 nodes say 𝑥0, 𝑥1, 𝑥2, 𝑥3 and so on. Let us just 

to for the understanding purpose we will take only four nodes suppose these are given as say point 

0.1, 0.7, 0.3 and 0.5.  

 

Remember, if you carefully see the construction of the interpolation whether it is Lagrange or 

Newton, they both never assume that the nodes are given in certain order. Whether it is increasing 

order in their value or decreasing or whatever, you can take these nodes in any order you want. 

Just to indicate that I have taken these nodes in our example. Now what we will do is we will 

simply do a permutation with these nodes.  

 

Let us say we just make this permutation 0.3 0.7 and 0.1 and after doing this permutation let us 

denote the nodes as 𝑧0, 𝑧1, 𝑧2 and 𝑧3. Now the theorem says that if you calculate the divided 

difference using these nodes that is the way they are arranged. And the divided difference that you 

calculate using these nodes they both will be equal that is what the theorem says. It may look a bit 

surprising at the first instance.  

 

Because from here you can see that the divided difference is given by 𝑓[0.1, 0.7, 0.3, 0.5] and that 

is equal to f of you have to take from the second to the last [0.7, 0.3, 0.5] minus f of you have to 

take these nodes 0.1, 0.7 and 0.3 divided by 0.5 - 0.1. So, this is the divided difference coming 

from the first set of nodes. And from the second set of nodes, you can see that the divided difference 

is given by 𝑓[0.5,0.3,0.7,0.1] =
𝑓[0.3,0.7,0.1]−𝑓[0.5,0.3,0.7]

0.1−0.5
.  

 

Now the theorem says that the value that you obtain from this formula is the same as the value 

obtained from this formula. This may look a bit surprising but this is true. How will you show this? 

Well, it is not very difficult, you see you are given these nodes.  
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What you did you only made a permutation of these nodes; you have not changed the value of 

these nodes. Therefore, here the data set is given by 𝑓(0.1), 𝑓(0.7), 𝑓(0.3) and 𝑓(0.5) and 

similarly here you have 𝑓(0.5), 𝑓(0.3), 𝑓(0.7) and 𝑓(0.1). Therefore, if you see from both of these 

data sets the polynomial that comes out will be of degree less than or equal to 3, say let us call this 

as 𝑝3(𝑥) and the polynomial which comes out of it let us call this as 𝑞3(𝑥). 

 

You can clearly see that both these polynomials will have this same set of interpolation conditions. 

Their interpolation conditions are not different only the way they are arranged is different but the 

values are same. Therefore, the interpolation conditions are going to be same, both are of degree 

less than or equal to 3 and therefore by uniqueness of the interpolating polynomial they both have 

to be equal.  

 

And hence the coefficient of the nth degree should also be the same that is how you get this result. 

Let us formally write this proof. 
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Your nodes 𝑧0, 𝑧1, ⋯ , 𝑧𝑛 is just a permutation of the given nodes 𝑥0, 𝑥1, ⋯ , 𝑥𝑛, it means that the 

nodes 𝑥0, 𝑥1, ⋯ , 𝑥𝑛 have only been relabelled as 𝑧0, 𝑧1, ⋯ , 𝑧𝑛. You have not changed their values 

you just made their positions change here and there and then made a new notation for them, that 

is all, and therefore their corresponding function values are not going to change and since the 

polynomial interpolating the function f at both these nodes are going to be the same. 
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And if you recall by definition the nth order divided difference 𝑓[𝑥0, 𝑥1, ⋯ , 𝑥𝑛] is the coefficient 

of 𝑥𝑛 in the interpolating polynomial. And that is going to be the same as the coefficient of 𝑥𝑛 of 

the polynomial that is interpolated from the nodes 𝑧0, 𝑧1, ⋯ , 𝑧𝑛. You are not going to change 



anything and that will tell us that both these divided differences are going to have the same value. 

So, this is a very simple proof but it is a very important result. 

(Refer Slide Time: 14:35) 

 

Now let us go to derive the actual formula for the nth order divided difference, note that the formula 

is given like this let us see how to derive this formula.  
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Let us start the derivation of this formula by setting up few notations. Let 𝑝𝑛(𝑥) be the polynomial 

interpolating the function f at the nodes 𝑥0, 𝑥1, ⋯ , 𝑥𝑛 and similarly 𝑝𝑛−1(𝑥) be the polynomial 

interpolating the function f at the nodes 𝑥0, 𝑥1, ⋯ , 𝑥𝑛−1 and now we will also consider another 



polynomial 𝑞(𝑥) which is the interpolating polynomial of f but now with nodes starting from 𝑥0 

and goes up to 𝑥𝑛. 

 

Remember this is a polynomial of degree less than or equal to n, this is a polynomial of degree less 

than or equal to n - 1 and similarly this is also a polynomial of degree less than or equal to n - 1 

because there are only n nodes therefore its degree should be 1 less that is how it goes whereas 

here you have n + 1 nodes. Therefore, its degree is less than equal to n. Now we will prove the 

following relation between 𝑝𝑛−1, 𝑝𝑛 and q.  

 

Let us try to prove this relation that is 𝑝𝑛(𝑥), remember its degree is less than or equal to n whereas 

this polynomial has degree less than equal to n - 1 and both these polynomials have degree less 

than or equal to n - 1. Now you are multiplying this polynomial with degree n - 1 with x. Therefore, 

this entire thing will be a polynomial of degree less than or equal to n, so that is the first 

observation, let us see how to prove this relation. 

(Refer Slide Time: 17:12) 

 

For time being let us forget this part and just take the right hand side polynomial, just now we have 

seen that the right hand side polynomial is of degree less than or equal to n so that is very clear. 

You can also see that the right-hand side polynomial satisfies all the interpolating conditions at 

𝑥0, 𝑥1, ⋯ , 𝑥𝑛. Remember 𝑝𝑛(𝑥) is the interpolating polynomial of f at these nodes.  

 



Now what we can observe is even this polynomial which is a polynomial of degree less than or 

equal to n also satisfies the interpolation conditions at these nodes. How will you see this? Well, 

let us take 𝑥0 and see what happens take 𝑥 = 𝑥0, you can see that this becomes 𝑥0 − 𝑥0. Therefore, 

the entire term goes to 0 at 𝑥 = 𝑥0, therefore you are only left out with 𝑝𝑛−1(𝑥0) and that is actually 

equal to 𝑓(𝑥0), why? Because 𝑝𝑛−1 is an interpolating polynomial at 𝑥0.  

 

Therefore, this polynomial satisfies the interpolation condition at 𝑥 = 𝑥0. Now let us take the point 

𝑥 = 𝑥1 and see whether this right-hand side polynomial satisfies the interpolation condition at 𝑥 =

𝑥1. You can see that this becomes 𝑥1,this becomes 𝑥1 and this is 𝑥1, 𝑥1. Now you can see that q is 

also a polynomial interpolating the function 𝑓(𝑥1), therefore this will be 𝑓(𝑥1) and 𝑝𝑛−1 is also 

an interpolating polynomial for the function f at the point 𝑥1.  

 

Therefore, this is also equal to 𝑓(𝑥1). Therefore, now this quantity which is in this bracket will 

become 0 and therefore this entire thing becomes 0 and you know this is 𝑓(𝑥1), again you can see 

that the right hand side polynomial satisfies the interpolation condition at 𝑥 = 𝑥1, at 𝑥 = 𝑥0 this 

term vanished and 𝑥 = 𝑥1 this term vanished. Similarly, from 𝑥 = 𝑥2 to 𝑥 = 𝑥𝑛−1 you can see that 

𝑝𝑛−1 also satisfies the interpolation condition.  

 

The same interpolation condition is also satisfied by 𝑞(𝑥) up to 𝑥𝑛−1. Therefore, just like what 

happened with 𝑥1, it will also happen with 𝑥2, then 𝑥3 and so on up to 𝑥𝑛−1. So, you can see that 

this right-hand side polynomial satisfies the interpolation condition at 𝑥1, 𝑥2, ⋯ , 𝑥𝑛−1 . Therefore, 

it remains only for us to show the interpolation condition for 𝑥 = 𝑥𝑛. Well, if you take 𝑥 = 𝑥𝑛 you 

will see that this gets cancelled and you have 𝑞(𝑥𝑛) −  𝑝𝑛−1(𝑥𝑛) they need not be equal.  

 

Therefore, this may not become 0 no problem but this will get cancelled with this and you will 

have 𝑞(𝑥𝑛) and you see q is an interpolating polynomial at 𝑥𝑛 also. Therefore, that will be equal 

to 𝑓(𝑥𝑛). So, even at 𝑥𝑛 this polynomial is satisfying the interpolation condition, therefore the 

right hand side polynomial actually satisfies all the interpolation conditions that is what we have 

shown.  

 



What does it mean? It means the right hand side polynomial is an interpolating polynomial at the 

points 𝑥0, 𝑥1, ⋯ , 𝑥𝑛. Remember 𝑝𝑛(𝑥) is also an interpolating polynomial at 𝑥0, 𝑥1, ⋯ , 𝑥𝑛,  

therefore by uniqueness they both have to be the same that is how this relation comes.  
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So, we have proved that 𝑝𝑛(𝑥) = 𝑝𝑛−1(𝑥) +
𝑥−𝑥0

𝑥𝑛−𝑥0
(𝑞(𝑥) − 𝑝𝑛−1(𝑥)). Now we are almost done 

with our derivation of the formula for nth order divided difference, it is just one step that we have 

to complete. What is that? Once if you have this relation, you can immediately see that the 

coefficient of 𝑥𝑛from this polynomial is equal to the coefficient of 𝑥𝑛 coming from this 

polynomial.  

 

Both have to be equal because the polynomials are equal. Now what is the coefficient of 𝑥𝑛 in 

𝑝𝑛(𝑥) that is from the definition of the divided difference it is nothing but 𝑓[𝑥0, 𝑥1, ⋯ , 𝑥𝑛] because 

𝑝𝑛 is the interpolating polynomial at the nodes 𝑥0, 𝑥1, ⋯ , 𝑥𝑛. Therefore, the coefficient of 𝑥𝑛 in 

this polynomial is this and now what is the coefficient of 𝑥𝑛 in this polynomial, let us see. 

 

The coefficient of 𝑥𝑛−1 that is the highest coefficient in this polynomial, remember this polynomial 

that is q is a polynomial of degree less than or equal to n - 1. Therefore, its coefficient is by 

definition of the divided difference it is equal to 𝑓[𝑥1, 𝑥2, ⋯ , 𝑥𝑛] because q is interpolated at these 



nodes that is why by the definition of divided difference the coefficient at the highest degree of q 

that is 𝑥𝑛−1 is this and now you are multiplying 𝑥𝑛−1 with x.  

 

Therefore, this will become the coefficient of 𝑥𝑛. So, I will have this term here that is 

𝑓[𝑥1, 𝑥2, ⋯ , 𝑥𝑛] then minus. Similarly, what is the coefficient of 𝑥𝑛−1 in 𝑝𝑛−1(𝑥)? Again, by the 

divided difference formula you can see that it is 𝑓[𝑥0, 𝑥1, ⋯ , 𝑥𝑛−1] . Why it is so? 𝑝𝑛−1(𝑥) is the 

interpolating polynomial at these nodes. Now again you will multiply this with x and therefore this 

will be the coefficient of 𝑥𝑛.  

 

So, therefore this will be 𝑓[𝑥0, 𝑥1, ⋯ , 𝑥𝑛−1], I am just comparing the coefficient of 𝑥𝑛 on both 

sides. I am just trying to see what is the coefficient of 𝑥𝑛 on the right hand side polynomial. Now 

you have one 𝑥𝑛 − 𝑥0 here that will come here in the denominator, 𝑥𝑛 − 𝑥0 and this is precisely 

what we wanted to show as the formula for the nth order divided difference 𝑓[𝑥0, 𝑥1, ⋯ , 𝑥𝑛]. 
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Next is an interesting concept called divided difference table, if you see from the formula of nth 

order divided difference it recursively depends on the lower order divided differences. When you 

go to compute them especially manually, it is quite confusing for us because of this recursive 

nature of the computation. So, if you want to compute manually, what people do is in order to 

avoid the confusion, they put these values in the form of a table.  

 



This is also called the central divided difference table. Similarly, you can also form forward 

divided difference table and backward divided difference table and we will omit the construction 

of forward and backward divided difference tables. Let us take the example of having 𝑥0, 𝑥1 upto 

𝑥𝑛to be 𝑥5 and let us try to understand how to construct the divided difference table up to fifth 

order divided difference.  

 

First you write the given data in the column wise, like this, and then you can see that this column 

represents the divided difference of order 0. Remember this is nothing but 𝑓(𝑥0) this is the zeroth 

order divided difference, similarly this is 𝑓(𝑥1) and so on. Therefore, this second column is the 

0th order divided difference, the third column is the first order divided difference where the first 

term is obtained by taking the difference 
𝑓(𝑥1)−𝑓(𝑥0)

𝑥1−𝑥0
.  

 

You can go back and just look into the formula that we have derived just now and see how to find 

this value. You can immediately see that its formula is nothing but 
𝑓(𝑥1)−𝑓(𝑥0)

𝑥1−𝑥0
. And once you 

compute this formula you have to write that value in between these two values, so that is the format 

of this central divided difference table. And similarly, 𝑓[𝑥1, 𝑥2] is obtained by taking the difference 

between this number and this number divided by this minus this.  

 

And that has to be written in between these two numbers. Similarly, all the other elements should 

also be computed with the same idea. Now going to the second order divided difference f of dot, 

dot, dot, so this is going to be the second order divider difference. How will you get this value? 

Well, this 𝑓[𝑥1, 𝑥2] − 𝑓[𝑥0, 𝑥1], then you go diagonally downwards and similarly diagonally 

upward till you reach this 0th order and then take just parallelly from here.  

 

Therefore, this value is computed as 𝑓[𝑥1, 𝑥2] − 𝑓[𝑥0, 𝑥1] divided by 𝑥2 − 𝑥0. Similarly, how will 

you get this value it is 𝑓[𝑥2, 𝑥3] − 𝑓[𝑥1, 𝑥2], then you go diagonally downwards and then 

diagonally upwards and then pick up this value and this value divided by 𝑥3 − 𝑥1. So, this is how 

you will compute the second order divided difference. Similarly, how to find the third order 

divided difference for instance this value is computed by taking the difference between this number 

minus this number.  



 

And then you go diagonally downwards up to the 0th order and then pick up the x coordinate 

parallelly. Similarly, this side you go like this and pick up the x coordinate here. So, the 

denominator is 𝑥3 − 𝑥0 and similarly you can also obtain the value of this by taking this minus 

this divided by 𝑥4 and similarly this side is 𝑥1, like this it will go. Similarly, you can get the fourth 

order divided difference and fifth order divided difference.  

 

Once you get this table done then it is very easy for you to write the Newton's form of interpolating 

polynomial. What you do is you pick up all this values at the leading diagonals you take all these 

values and they will see it as the coefficient in the Newton's interpolating polynomial.  

(Refer Slide Time: 32:14)Type equation here. 

Type equation here.  

Let us see since we have 𝑥0, 𝑥1 up to 𝑥5 that is what we have taken in our example. Therefore, we 

will be constructing the 5th degree interpolating polynomial for the function f and it is given by 

𝑓(𝑥0) and that is the value obtained here then plus 𝑓[𝑥0, 𝑥1](𝑥 − 𝑥0), you will not write 𝑥 − 𝑥1 

here. So, this will not come you will only have up to the previous one and that is just obtained 

from this element. 

Similarly, 𝑓[𝑥0, 𝑥1, 𝑥2](𝑥 − 𝑥0)(𝑥 − 𝑥1) that is what is sitting here and what is this value this value 

is precisely coming from here. Then go to the third term the third order divided difference into 

(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2) that is sitting here and what is this third order divided difference that is 



coming from here, similarly the fourth term and the fifth term they are also coming from the top 

diagonal elements. 

 

So, that is the easy way of remembering the construction of Newton’s interpolating polynomial. 

Now the advantage of writing the Newton's form of interpolating polynomial in terms of the 

divided differences is that it is very easy to remember if you understand the divided difference 

table and also to compute this polynomial on a computer. These coefficients can be obtained using 

a recursive subroutine.  

 

And therefore, it is very efficient to compute Newton's interpolating polynomial. You do not need 

to remember the lower degree interpolating polynomials in order to get these coefficients in that 

way Newton's interpolating polynomial becomes more efficient than Lagrange interpolating 

polynomial. With this let us finish this lecture, thank you for your attention. 


