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Polynomial Interpolation: Lagrange and Newton Forms 

 

Hi, we are learning polynomial interpolation of a given data set. In this we have learned that for a 

given data set we can always find a polynomial interpolation and such a polynomial interpolation 

will always be unique for a given data set. This is what we have learned so far. In this class we 

will learn two ways to construct such a polynomial interpolation for a given data. One is the 

Lagrange interpolation and another one is the Newton's interpolation.  
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Let us quickly recall what is an interpolating polynomial for a given data. We are given a data set; 

it means we are given a set of nodes and the corresponding set of values at these nodes. These 

values may be coming from a function or these values may be generated through some source like 

experiments. Now the question is can we find a polynomial say 𝑝𝑛(𝑥) such that 𝑝𝑛(𝑥𝑖) = 𝑦𝑖. So, 

that is what is called the polynomial interpolation.  

 

More precisely a polynomial 𝑝𝑛(𝑥) is said to be an interpolating polynomial for the given set of 

data that is more important, if its degree is less than or equal to n remember from where we are 

catching this n? It is coming from the number of nodes that are given in our data. If you are given 



n + 1 node starting from the index 0 and goes till n then the degree of the polynomial should be n 

that is what we have to remember.  

 

So, the polynomial 𝑝𝑛(𝑥) should be of degree less than or equal to n and it also satisfies the 

interpolation conditions given by this. So, if these two conditions are satisfied by a polynomial, 

then that polynomial will be called as the interpolating polynomial for this set of data that is what 

we have seen in the last class. 
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We have seen that for a given data set there always exist an interpolating polynomial and not only 

that, such an interpolating polynomial is also unique for a given data set that is what we have 

proved in the last class. But we never constructed such a polynomial in our last class. We only 

proved the existence by formulating a Vandermonde system and showing that the Vandermonde 

matrix is invertible. Today we will give two different formulas to construct these polynomials.  

 

Remember although we give two different formulas finally those two formulas will lead to the 

same interpolating polynomial for a given set of data. Why? Because we have proved that such an 

interpolating polynomial is unique. It is only that the methods or the form in which we construct 

the polynomial is different but they both will lead to same polynomial. 

(Refer Slide Time: 03:57) 



 

Let us start with the first method called Lagrange form of interpolating polynomial. We are given 

a data set like this. The Lagrange form of interpolating polynomial is given by this formula. You 

can observe that this is the linear combination of some polynomials. How these polynomials are 

given? These are given by 𝑙𝑘(𝑥) and its expression is given like this. This is nothing but the 

product. 

 

So, product of these terms where you have I, here i runs from 0 to n but it excludes i = k that k is 

sitting here and this is called the kth Lagrange polynomial. Note the difference between Lagrange 

form of interpolating polynomial that is given by this expression and the Lagrange polynomial 

means this polynomial. You can see that it is a polynomial of degree n, why? Because in this 

product we have n + 1 terms but we are excluding one term here which is nothing but the kth term.  

 

And that is called the kth Lagrange polynomial. Therefore, the product runs with n + 1 index but 

in between one index is removed. So, it has n terms in the product and each term contributes to x 

therefore its degree is n. And this polynomial is the linear combination of nth degree polynomials 

there are n + 1 such polynomials. Therefore, this is a polynomial of degree less than or equal to n. 

Now we have to prove that it also satisfies the interpolating condition. 

 

Once you do that then the uniqueness says that your polynomial interpolation is nothing but this 

form. Let us try to prove this. 
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Again, I will tell you what we have to prove. Lagrange’s suggests that the interpolating polynomial 

will look like this where all this 𝑙𝑘’s are the Lagrange polynomials. Remember, the space of all 

polynomials of degree less than or equal to n forms a vector space. And we are trying to get our 

interpolating polynomial as a member from this vector space and you can also show that the 

Lagrange polynomials form a basis for this space.  

 

And therefore, our polynomial 𝑝𝑛(𝑥) in fact can be written as the linear combination of this basis 

elements that is the overall idea behind this. So, as a proof what we will do is, first we will show 

that this expression is nothing but a polynomial of degree less than or equal to n that is not very 

difficult to show. And next is that we have to show that this 𝑞(𝑥) which is now a polynomial of 

degree less than or equal to n satisfies all the interpolation conditions. 

 

Thereby 𝑞(𝑥) will also be an interpolating polynomial to the given data set. Already we have 

𝑝𝑛(𝑥) as our interpolating polynomial. We do not know how it looks like but that is our assumption 

that we always have this polynomial for a given set of data. Now we constructed another 

polynomial like this, thanks to Lagrange. Now the uniqueness says that these two should be equal, 

that is how we will prove this theorem.  

 



As the first step, we have to prove that 𝑞(𝑥) is a polynomial of degree less than or equal to n and 

that I have already told you how to show that you take each Lagrange polynomial you can see that 

each Lagrange polynomial is actually a polynomial of degree n. So, that is not very difficult for us 

to observe from here, you can easily observe and then q is written as a linear combination of all 

these polynomials of degree n.  

 

Therefore, q itself is a polynomial of degree less than or equal to n. So, that proves the first property 

of an interpolating polynomial. 
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Let us now try to prove the second property, that is, q satisfies all the interpolation conditions. 

How to do that? Again, take this Lagrange polynomial 𝑙𝑘(𝑥) equal to this this is the kth Lagrange 

polynomial. Let us closely look at this polynomial and try to understand how it looks like. I am 

just writing this expression by just putting this product explicitly instead of using this notation that 

is all I am doing; I am not doing anything. 

 

Therefore, you can see that i runs from 0 to n therefore when i = 0 you have 𝑥 − 𝑥0 that is coming 

from here divided by 𝑥𝑘 − 𝑥0 that is coming from the denominator into when i = 1 the numerator 

is 𝑥 − 𝑥1 and the denominator is 𝑥𝑘 − 𝑥1 like that it goes till 𝑥𝑘 − 1 then you see that we are just 

excluding the term i = k. We do not want to include that term into our product. Therefore, there is 



supposed to be one more term 𝑥 − 𝑥𝑘 and similarly here 𝑥𝑘 − 𝑥𝑘 and that is actually removed in 

our product in this definition.  

 

Of course, that is quite nice that we have to remove it because otherwise this term would have 

become 0 it would have made the entire term to be not defined at all. Therefore, that kth term is 

actually removed from this product and then it jumps from k - 1 to k + 1 and then it goes just like 

how it went here it goes till 𝑥 − 𝑥𝑛 to 𝑥𝑘 − 𝑥𝑛. So, this is how the kth Lagrange polynomial looks 

like. Now let us take 𝑥 = 𝑥𝑘, can you see what happens?  

 

It means you are putting 𝑥 = 𝑥𝑘 here that will get cancelled with this term again here 𝑥 = 𝑥𝑘 if 

you put this term also get cancelled. Similarly, all the terms will get cancelled and you will get this 

term equal to 1. It means 𝑙𝑘(𝑥𝑘) = 1, this is what we are seeing. Similarly, what happens if we take 

x = some 𝑥𝑗 for 𝑗 ≠ 𝑘, just see what happens. If you take 𝑥 = 𝑥𝑗 for 𝑗 ≠ 𝑘 then see you already 

excluded k from this term.  

 

Therefore, this j will be one of these terms. This jth term will be sitting in this product at some 

stage and that will make 𝑥𝑗 − 𝑥𝑗  in the numerator and that will make the entire thing to become 0. 

So, therefore you can see that 𝑙𝑘(𝑥𝑗) = 0 when 𝑗 ≠ 𝑘.  
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So, that is what I am writing here 𝑙𝑘(𝑥𝑗) = 1 if 𝑗 = 𝑘 and 0 if 𝑗 ≠ 𝑘. Now come back to our 

polynomial that Lagrange is suggested as, well this can be written as 𝑦0𝑙0(𝑥) + 𝑦1𝑙1(𝑥) +

𝑦2𝑙2(𝑥) + ⋯ + 𝑦𝑛𝑙𝑛(𝑥). Now let us take x is equal to say 𝑥1 what happens here? Then on the left 

hand side you have 𝑞(𝑥1) and that is equal to 𝑙0(𝑥1). If you see when 𝑘 ≠ 𝑗 then 𝑙𝑘(𝑥𝑗) is 0.  

 

Therefore, this term will become 0 and 𝑙1(𝑥1) will come, again when 𝑘 = 𝑗, 𝑙𝑘(𝑥𝑗) is 1. Therefore, 

this will give us the value 1 and all other will give us the value 0 and therefore you will be left out 

with 𝑦1. So, that shows that 𝑞(𝑥1) = 𝑦1 this is just an example, I have taken. You can similarly 

show that 𝑞(𝑥0) = 𝑦0 and so on. In general, you can show that 𝑞(𝑥𝑗) = 𝑦𝑗 for each j = 0 to n. This 

is precisely the interpolation condition.  

 

Therefore, you can see that q is a polynomial of degree less than or equal to n and also it satisfies 

the interpolation conditions that shows that 𝑞(𝑥) is an interpolating polynomial, we have 𝑝𝑛(𝑥) as 

the interpolating polynomial on one hand. Now Lagrange is suggested a formula and we called it 

as 𝑞(𝑥) and we have shown that that formula is also giving an interpolating polynomial. Now by 

uniqueness that formula that we got should be equal to 𝑝𝑛(𝑥) which is the interpolating 

polynomial.  

 

Now from this theorem, what we get is a nice formula to get an interpolating polynomial for the 

given data set and it is of course unique. Therefore, that is the interpolating polynomial for the 

given data set that is what we understand. 
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Let us take an example. Let us take this nice function. If you recall we have taken an example in 

the last class where interpolating polynomial was not successful in giving a good approximation. 

Now we are taking a nice function 𝑓(𝑥) = 𝑒𝑥, let us see how the interpolating polynomial works. 

Now I can construct and show you because we know one formula to construct the interpolating 

polynomial.  

 

Therefore, we will go to construct the polynomial explicitly. To keep our construction very simple 

I will take only two nodes. If I take two nodes, I will have to construct the polynomial that is the 

interpolating polynomial of degree one, that is linear polynomial and my aim is to find the value 

of the exponential function at the point 0.826 which is something in between these two points. So, 

I want to find the value of the exponential function at 0.826.  

 

The idea is to first construct the linear interpolating polynomial and then find the value of that 

linear interpolating polynomial at the point 0.826 and just take that as the approximation to the 

corresponding exponential value that is the idea. now use the Lagrange form of the interpolating 

polynomial to get the expression for 𝑝1(𝑥). For that what we have to do? We have to first find the 

0th Lagrange polynomial and then first Lagrange polynomial.  

 

And then write this linear combination where 𝑓(𝑥0) is this and 𝑓(𝑥1) is this value. So, let us write 

this. What is 𝑙0(𝑥)? 𝑙0(𝑥) should be 𝑥 − 𝑥1 divided by 𝑥0 − 𝑥1. You just see the general formula 



of 𝑙𝑘(𝑥) and try to understand why in this case 𝑙0(𝑥) is given like. Similarly, 𝑙1(𝑥) is given like 

this.  
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Once you get 𝑙0 and 𝑙1, you simply write the linear interpolating polynomial as 𝑓(𝑥0)𝑙0(𝑥) +

𝑓(𝑥1)𝑙1(𝑥) so that is very simple. So, this is the Lagrange form of interpolating polynomial. I just 

simplified it, in general you do not need to simplify; you can just leave it like this. But I have just 

simplified it and this is precisely the linear polynomial interpolating the given data set. Now we 

are interested in finding 𝑒0.86, that is what the problem that we post for ourselves.  

 

Now we will use the interpolating polynomial to get the value and this is a nice story, a successful 

story. You can see the relative error in 𝑝1(𝑥) which is the approximate value when compared to 

the exact value. The relative error is pretty small even for the linear polynomial. You see that is 

the good news for us. Of course, the function is very good and also the nodes are very close to 

each other.  

 

You can see that the nodes are very close to each other that is one good thing and second thing is 

this function is a very nice function you can see that it is a real analytic function. Therefore, often 

it goes well with such approximations that is the idea. 
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Just to have a feeling let us go and insert one more point into our data set. Previously you had this 

and this. Now we are having this, 𝑥1 as this and 𝑥2 as this. Now we have this data set and thereby 

we will have a quadratic polynomial as our interpolating polynomial for this data set. Remember 

this will be different from the previous one because the data set itself is different now. Now you 

can construct the quadratic polynomial. How will you do that?  

 

You first have to find 𝑙0(𝑥). Now it will be 𝑥 − 𝑥1, see 𝑥0 term you have to leave therefore 𝑥 − 𝑥1 

will be there, 𝑥 − 𝑥2 will be there divided by (𝑥0 − 𝑥1)(𝑥0 − 𝑥2). Similarly, 𝑙1(𝑥) will have all 

the terms removing 𝑥 − 𝑥1 term that is 
(𝑥−𝑥0)(𝑥−𝑥2)

(𝑥1−𝑥0)(𝑥1−𝑥2)
. Similarly, 𝑙2(𝑥) =

(𝑥−𝑥0)(𝑥−𝑥1)

(𝑥2−𝑥0)(𝑥2−𝑥1)
. Once you 

have this, then 𝑝2(𝑥) = 𝑓(𝑥0)𝑙0(𝑥) + 𝑓(𝑥1)𝑙1(𝑥) + 𝑓(𝑥2)𝑙2(𝑥). Once you have 𝑝2(𝑥) you plug 

in x = 0.26 and that will give you this value.  
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You can see that the relative error is much smaller than what we have obtained from the linear 

interpolating polynomial. So, this is a successful story for us in applying the interpolating 

polynomial to approximate a function at some given nodes. So, this is the discussion about the 

Lagrange form of interpolating polynomial. Let us now pause on to Newton's form of interpolating 

polynomial. 
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And see how Newton proposes a formula for the interpolating polynomial. Remember whether 

you apply Lagrange’s formula or Newton's formula when you finally simplify that polynomial 

both these formulas will lead to the same polynomial that is what the uniqueness says. Now given 



Lagrange polynomial why are we actually worried about another formula, that is the question. If 

you see Lagrange form of interpolating polynomial is given like this. 

 

This is simply the linear combination of the basis element of the space of all polynomials of degree 

less than or equal to n. In that way Lagrange form is very nice especially, to use it in doing any 

theoretical study. On the other hand, Lagrange form of interpolating polynomial is not that 

preferred for computational purpose mainly for one reason, that is, often we come across a situation 

where we considered a data set.  

 

And constructed a polynomial 𝑝𝑛(𝑥) and then saw that the approximation that we get out of 𝑝𝑛(𝑥) 

is not enough for our problem. So, we wanted to have a better approximation therefore we will 

include more data into our data set and try to get a higher degree interpolating polynomial. Such 

situations occur quite often in applications. In such case you see even if you put one point into 

your data set all the Lagrange polynomials have to be constructed right from the scratch.  

 

You cannot make use of your effort in computing 𝑝𝑛(𝑥) in order to compute 𝑝𝑛+1(𝑥). All these 

computational efforts have to be thrashed and 𝑝𝑛+1(𝑥) have to be constructed from the scratch 

because all the Lagrange polynomials have to be reconstructed even if you put one node point 

more into your data set. That is a big disadvantage of writing the interpolating polynomial in the 

form of the Lagrange.  

 

Now that is where Newton's form is quite handy because in the Newton's form what we can do is, 

we can write 𝑝𝑛+1(𝑥) = 𝑝𝑛(𝑥) +  𝑒𝑥𝑡𝑟𝑎 𝑡𝑒𝑟𝑚𝑠.  𝑅emember this is when you already computed 

𝑝𝑛(𝑥). Therefore, this is already known to you plus you will simply put some more extra terms to 

get the higher degree polynomial 𝑝𝑛+1(𝑥). In that way most of your effort is now saved from your 

previous computation and you have to put new effort only to obtain this extra term.  

 

Now the Newton form of interpolating polynomial is to just see what is this extra term. We propose 

this extra term in this form and the question is why should I put this form. You can see that if you 

propose this form for the extra term then if you put 𝑥 = 𝑥0 then this term went to zero because of 



this term and then you will be left out with 𝑝𝑛(𝑥0)  and you know that 𝑝𝑛 is already an interpolating 

polynomial for this data.  

 

And therefore, this 𝑝𝑛(𝑥0) will give you 𝑦0. And in that way the interpolation condition for 

𝑝𝑛+1(𝑥0) is readily achieved through 𝑝𝑛. Similarly, you can achieve the interpolating condition 

for 𝑥1, 𝑥2 up to 𝑥𝑛 if your extra term is like this. Now the only problem is you have to make sure 

that 𝑝𝑛+1(𝑥) satisfies the last interpolation condition that is 𝑝(𝑛+1)(𝑥𝑛+1) = 𝑦𝑛+1. This is the only 

remaining interpolation condition that we have to ensure.  

 

But for that we are including a free variable here. You see that is why we have inserted a free 

variable c here. Now what you can do is you put 𝑥 = 𝑥𝑛+1 in this expression. Remember that may 

not give any known value to this it will come as its own value when you put 𝑝𝑛(𝑥𝑛+1) it will not 

give 𝑦𝑛+1 because 𝑝𝑛 is not going to interpolate the node point 𝑥𝑛+1. It will only interpolate the 

points 𝑥0 to 𝑥𝑛 therefore this will be some value. But then you can choose your c such that 

𝑝(𝑛+1)(𝑥𝑛+1) = 𝑦𝑛+1. How will you do that? 
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You have to choose your c such that the last interpolation condition is satisfied that is not very 

difficult. What you will do is you will put instead of 𝑝(𝑛+1) you will put 𝑦𝑛+1then you bring this 

to the other side and all this can then be brought to the other side to get your value for our 



expression for the unknown c. So, in that way you also obtained the interpolation condition for the 

last node.  
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So, that gives us the Newton's form of interpolating polynomial. The advantage is that in case if 

you go to add one more point to an existing data for which you have already computed the 

interpolating polynomial then Newton's form will help us to just do an extra computation and keep 

the previously computed interpolating polynomial and to get the higher degree polynomial that is 

the advantage in the Newton's form.  

 

Computationally, in this sense Newton's form is little efficient than Lagrange form. The Newton's 

form of interpolating polynomial will look like this where all these 𝐴𝑖’s or constants that has to be 

obtained using the interpolation conditions. Let us see how these constants 𝐴𝑖 are looking like. 
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The Newton's form is proposed in this form. Now if you put 𝑥 = 𝑥0 you can see that all these terms 

will vanish because all these terms involve 𝑥 − 𝑥0 So, therefore all these terms will become 0 and 

you will be left out with 𝐴0 and you put 𝑥0 and that you force it to be 𝑓(𝑥0) or 𝑦0 and that is how 

you will get the value of 𝐴0. So, you can see that 𝐴0 depends on the function f and its value at 𝑥0.  

 

Similarly, to get 𝐴1 you put 𝑥 = 𝑥1 so all these terms will go to zero because all these terms involve 

𝑥 − 𝑥1 other than these two terms. You already know that this is 𝑓(𝑥0). From here you can get 𝐴1 

as 𝑓(𝑥1) − 𝑝0(𝑥1), see 𝑝0(𝑥1) is nothing but 𝑓(𝑥0) that is nothing but 𝐴0 that is how it is coming. 

Therefore 𝐴0depends only on 𝑓(𝑥0) and 𝐴1 depends on 𝑓(𝑥1) and it also depends on the lower 

degree polynomial.  

(Refer Slide Time: 32:30) 



 

So, this will go on with all the other coefficients 𝐴𝑖’s, 𝐴2 will look like this which will depend on 

the lower degree polynomial and in general 𝐴𝑛 is given like this. This is what precisely we called 

as c in our previous slide where 𝐴𝑛 depends on the immediate lower degree polynomial. So, this 

is how the coefficients of the Newton's form of interpolating polynomial is obtained. 
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Therefore, to compute Newton's form of the interpolating polynomial 𝑝𝑛 for a given data set it is 

enough for us to compute the coefficients 𝐴0, 𝐴1, ⋯ , 𝐴𝑛 where each coefficients expression is 

given like this. You can observe that it depends on the immediate lower degree polynomial. This 

is actually again not computationally efficient because in order to compute all this coefficient you 

have to remember all the lower degree polynomials.  



 

Again, that will lead to computationally very expensive algorithm that is again a bad news from 

the way we have posed the Newton's form of interpolating polynomial. Again, I will tell you we 

need to know all the successive interpolating polynomials in order to construct the coefficients of 

the Newton form of the interpolating polynomials. Also, we need to evaluate this polynomial, 

remember evaluating polynomial is not that easy.  

 

It is a very expensive, computational cost is involved in that. And therefore, finally if you just see 

the total cost involved in the Newton's form in the way we have posed it is no way going to be 

better than the Lagrange form. Now that seems to be little depressing because we have put effort 

to construct another form of interpolating polynomial exactly putting what is needed for us and 

made our polynomial in that way. 

 

But still we see that the coefficients involve the lower degree polynomials and that again increased 

our computational cost. 
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So, now the question is can we somehow rewrite these coefficients in such a way that we can 

reduce the computational cost that is the question. The answer is yes, so there is another interesting 

concept called Newton's divided differences. We can see that this 𝐴𝑘’s are precisely the Newton's 



divided differences and we can derive a formula for all these divided differences that is all these 

𝐴𝑘’s which does not involve the evaluation of the polynomials of lower degrees.  

 

That is the good part of the Newton's form. We will discuss the Newton's divider difference 

formulas in the next class, thank you for your attention. 


