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 Lecture - 37 

Nonlinear Equations: Implementation of Newton-Raphson’s Method as Python Code 

 

We have completed iterative methods for nonlinear equations. In this lecture we will try to 

implement Newton-Raphson method. Let us start our discussion with developing a python code 

for Newton-Raphson method.  
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Let us recall the Newton-Raphson method along with what are all the inputs we need and also 

what we want to take as an output from the code. We need the following inputs. First of all, we 

need the function f which defines the required non-linear equation 𝑓(𝑥) = 0. And if you recall the 

formula for Newton-Raphson method also includes the derivative of the function f. Therefore, we 

have to take 𝑓′ also as the input.  

 

These two are taken as exact expressions and then we need an initial guess for the root of our 

equation that is taken as 𝑥0. And then once we start generating the iterative sequence, we have to 

stop the iteration at some point. For that we will take the tolerance parameter ϵ and we will try to 

check the Cauchy criteria to stop the iteration. Let us quickly recall the Newton-Raphson method. 
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The Newton-Raphson method formula is given like this, remember we are given 𝑥[0] and from 

there we will get 𝑥[1] using this formula. And once you get 𝑥[1], using 𝑥[1] we will get 𝑥[2] and 

so on. So, this is how the iteration should go. Remember x[0] is taken as the input that you will 

plug in here in the first iteration and then already, we have taken the expression for 𝑓 and 𝑓′. 

Therefore 𝑥[1] can be calculated using this expression and then using 𝑥[1] you will get 𝑥[2] and 

so on.  

 

So, in that way we have to formulate a loop which will run for each iteration. Now where to break 

the loop and how to break the loop? For that we need the stopping criteria. For the stopping criteria 

we will use the Cauchy criteria and finally what is the output? The output should be the value of 

the iteration 𝑥[𝑘 + 1]. I hope you understood the idea of how we have to go ahead in coding the 

Newton-Raphson method. Let us now see the code.  
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Let us start with the input. We have to take the function 𝑓 which defines the equation 𝑓(𝑥) = 0. 

And that is defined here, you can see that I am taking 𝑓(𝑥) = (𝑥 − 1)2(𝑥 − 5). From this itself 

we can clearly see what are all the roots of the equation 𝑓(𝑥) = 0. The roots are x = 1 and x = 5. 

The next thing is, we have to also input the expression for the derivative of f, that I am taking in 

the variable fd. Remember these two are going to be considered as exact expressions.  

 

By supplying the value of x, you can evaluate f(x) and fd(x). Then the next input is the array x has 

two components x[0]. Remember in python the index starts from 0, x[0] and that is assigned as 

two in this case and then x[1] is initialized as 0 here that is what this line means and then we have 

the epsilon which is the tolerance parameter. I have taken it to be a very small number so that I 

want a very good accuracy for my root.  

 

So, these are all the inputs as we have seen previously. Now let us go into the main part of the 

code that is the iteration process. This is the main loop of my program but before getting into the 

program I am just doing one, iteration outside. Why, because I have to check x[1] – x[0]. So, for 

that I need the value x[1] that is why, once I am doing the iteration outside the loop and then I will 

start the loop by checking the stopping criteria.  

 

So, this is my stopping criteria. So, when I enter into the loop, I have to first have the value of this 

error. That is why, x[1] alone is computed outside the loop and now you can see how I am 



computing x[1] . Remember x[1] is nothing but x[0] – f(x[0]). Remember f is given by this 

expression and by sending the value of x[0], I can find the value of this expression by putting f(x[ 

0]). That is what it means and then divided by 𝑓′(x[0]). But how do we have defined the expression 

for 𝑓′?  

 

We have defined it by fd. Therefore, I will have fd(x[0]). So, that is precisely what I am writing in 

this expression. Once I compute the value of x[1] then I will compute the absolute value of the 

difference between x[1] and x[0]. This is precisely the absolute error which I want here because I 

want to check these stopping criteria whether it is less than epsilon or not. That is precisely checked 

in this expression.  

 

So, I am initiating a while loop here and the while loop runs whenever this error is greater than 

epsilon, our loop will keep on running. When it becomes less than epsilon then the loop will break 

and we will come out of the loop. Now let us see what are we computing inside this loop as you 

can see there are 3 lines in the loop. Why are there only 3 lines? Because we have given this indent 

here, so whatever is given with indent, are considered to be the part of the loop.  

 

So, we have given only these three lines with an indent. Therefore, these three lines are considered 

to be the part of the while loop and this will keep on going again and again till this condition is 

satisfied. Once this condition is violated, then it comes out of the loop. Let us try to understand 

what is happening inside this loop?  
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Ideally, we should have many components of the array x because we have to take x[0] as an input 

then find x[1] and once you find x[1] you find x[2] and so on. So, we need many components of 

the array x but what we observe is, once you get x[1] to compute x[2], we only need x[1]. We do 

not need x[0] in order to compute x[2]. Therefore, why to waste the memory for so many 

components of x when we need only x[k] to compute x[k + 1].  

 

That is why what I am doing here is, once I computed x[1] and also, I found this absolute error I 

do not need x[0] anymore. Therefore, I put the value of x[1] which is computed here into the 

variable x[0]. In that way I have made this memory for x[1] free now. The next iteration which is 

given like this is now computed and stored in x[1]. Therefore, I just compute x[2], which is actually 

x[1] – f(x[1]) divided by fd(x[1]).  

 

But what I did is, I took x[1] and put that value into x[0]. Therefore, I will simply write x[0] instead 

of x[1]. I hope you understood the logic here because I stored the value of x[1] in x[0], I am using 

this variable now x[0]. Remember this is holding the value of x[1] now because of this line, I do 

not need to create one more component for the array. So, what I am doing is I am simply using 

x[1] here. So, that is why I am using this expression.  

 

So, this will overwrite the value that is already computed here. It does not matter that we do not 

need that value anymore that is why I am doing it. Once you have x[1], again you go to find the 



absolute error in x[1] when compared to x[2]. And now once you have the new value of the error 

again you come to check whether the stopping criteria is satisfied or not. If the stopping criteria is 

not satisfied, that is if the absolute error is still greater than or equal to epsilon.  

 

Again, you will go now remember x[2] is actually stored in x[1] only. It is stored in x[1] that again 

you will rewrite with x[0]. And thereby x[1] is again made free and you will now store the x[3] 

value in x[1] by again doing this computation and then you will go to check the error, like that it 

will keep on going and then do this computation again and check this condition like this process 

will go. And this is the iterative process for the Newton-Raphson method.  

 

And now we are into the output of the code. Let us see what we have to take as the output as far 

as the output is concerned.  
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We will take the approximate root of the equation as x[1] when the loop breaks, you have the 

recently calculated value stored in the variable x[1]. And that will be finally printed on the screen 

as the approximate root of our equation. I am also giving the residual error just for our information. 

Let us run this code to see what the output is. Remember we have the equation 𝑓(𝑥) =

(𝑥 − 1)2(𝑥 − 5) and that is equal to 0.  

 



That is our equation and we started our initial guess as x[0] = 2. I am sorry this is actually x - 1. 

Let us see what is the output of this code. You can see that the approximate root is printed finally 

and that is given by approximately equal to 1. Therefore, when we start the iteration with the initial 

guess as 2 then the iteration seems to have converged to the root x = 1. That is what we are seeing. 

You can also see that the residual error is pretty small.  

 

And this is what we would like to do in the Newton Raphson implementation. Thank you for your 

attention.  


