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Hi, we are discussing numerical methods for capturing isolated roots for non-linear equations. 

In today's class we will extend our studies to system of equations. We will restrict our discussion 

only to system of two equations. Once we understand this, extending the idea to any number of 

equations is straightforward. 
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So, with that in mind let us consider two non-linear equations given by 𝑓1(𝑥1, 𝑥2) = 0 and 

𝑓2(𝑥1, 𝑥2) = 0, where 𝑓1 and 𝑓2 are functions from ℝ2 → ℝ. We can write this system in the 

vector notation as 𝑓(𝑥) = 0, 0 is vector and f is given by (𝑓1, 𝑓2) and x is the vector in ℝ2 and 

f is a function from ℝ2 → ℝ2. Now we are interested in finding an isolated root of this non-

linear system. 

 

Let us call this isolated root that we are interested in as the vector 𝒙∗ and it is given by  (𝑥1
∗, 𝑥2

∗)𝑇. 

Remember, right from our chapter on numerical linear algebra we always considered vectors as 

column vectors. That is why whenever I write a vector, I write it in the row wise and then put a 

T there. 

 



It means it is written in the column wise, I am doing this just to save the space. If I write it in 

the column wise it may take more space. So, you should understand the vector for instance this 

as (𝑥1
∗, 𝑥2

∗)𝑇. This is what we mean by writing like this and putting a transpose here. 
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The idea is to first set up a fixed point iteration sequence. If you recall in our last two lectures 

we have introduced this general framework of iterative methods with one initial guess in the 

form of a fixed point iterative method. So, we will apply that idea component wise to each 

equation in our system and thereby we have two equations. In the vector notation this fixed 

point iteration method can be written like this. 

 

Where g is the vector valued function from ℝ2 → ℝ2  and 𝒙𝒏 is a vector in ℝ2 and this 

expression generates the iterative sequence. We will provide the value of 𝒙0 as the initial guess 

and then we will generate this sequence using this expression for 𝒙1, 𝒙2, 𝒙3 and so on. 

Remember the function g is called the iterative function and this has to be specified as the part 

of our method itself. 
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All these ideas are familiar to us. Therefore, I will not explain them once again. 
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Now to analyze the convergence of this fixed point iteration method, if you recall we have 

certain hypothesis proved in our last class when we worked with single non-linear equation. 

The same idea will also go with system of equations. Recall that you have this system f(x) = 0 

you will write it in an equivalent form as x = g(x). That is the main idea of the fixed point 

method. 

 

So, you will choose this iteration function in such a way that isolated root of the non-linear 

system f(x) = 0 is also an isolate fixed point of the iterative function g. Therefore, we will denote 

the isolated fixed point of g as 𝒙∗. 
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Now we will use the Taylor approximation to write each component of the vector g around an 

iteration vector 𝒙𝑛 with Taylor polynomial being degree 0. Then the reminder term is given like 

this. Remember this is the Taylor formula, in two dimensions; you should go back and recall 

how we write Taylor's formula in 2D. We have only introduced it for one variable. You can 

similarly write the Taylor formula for two variable functions. 

 

Here I am just writing the function g at the fixed point and that is taken around the point 𝒙𝑛 and 

we have only taken the Taylor polynomial of degree 0 and therefore the remainder term is 

written like this. Here you will get two 𝛏𝑛’s; one for each component that is for 𝑔1 when you 

expand you will have a 𝛏(1) and since we are expanding this g around the point 𝒙𝑛 therefore we 

will also use the notation 𝛏𝑛
(1)

 for it. 

 

And this is a vector and it is given by ξ1,𝑛 and this is for the first component of the vector g and 

ξ2,𝑛 and this lies on the line segment joining 𝒙∗ and 𝒙𝑛. Remember you are writing g at 𝒙∗ and 

using the Taylor formula at 𝑎 = 𝒙𝑛. That is what you are doing and the Taylor formula is written 

with polynomial of degree 0 that is Taylor polynomial of degree 0 and you have the remainder 

term. 

 

So, you have to do it component wise. We have two components for g, 𝑔1 will give one such 

expression and 𝑔2 similarly will give another expression like this with 𝛏𝒏
(𝟐)

 = (ξ1,𝑛
(2)

, ξ2,𝑛
(2)

). This is 

the notation that we will use. 
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Now you can see that this is equal to 𝑥1
∗, this is what we have even here; g is chosen in such a 

way that 𝒙∗ is a fixed point. Therefore, this is equal to 𝑥𝑖, for i = 1, 𝑔1 of this is 𝑥1
∗ and 𝑔2 of 

this is equal to 𝑥2
∗. That is what we have written here. Similarly using the iteration formula, you 

can write this as 𝑥𝑖,𝑛+1. 
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And then, I will take this to the other side to write 𝑥𝑖
∗ which is on the left hand side 𝑥𝑖,𝑛+1, which 

I have taken from the right hand side to the left hand side and that is going to be equal to the 

remainder term. That is already there on the right hand side. So, that is what we get here and 

this is obtained component wise. That is i = 1 and 2. Just to write these two equations in the 

matrix form we get this equation. 

 



I am just putting i = 1 and that gives me the first row of this system and put i = 2 that gives me 

the second row of the system. So, now we got this. Now we will give a notation for this matrix. 

Remember this is nothing but 𝒙∗ − 𝒙𝑛+1 and this I will give a notation 𝐺𝑛 therefore this will be 

𝐺𝑛(𝒙∗ − 𝒙𝑛+1). So, this is what we can write it in the vector notation. 
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For that I will define the matrix 𝐺𝑛 like this. Now what is this 𝐺𝑛? If you recall the Jacobian of 

the function g. Remember g is a vector valued function, therefore you can write the Jacobian 

matrix of g and it is given like this. Now this is not exactly the Jacobian matrix because for 

having the Jacobian matrix you have x applied in all the elements of this matrix, whereas here 

we are applying ξ(1) for the first row. 

 

This is also ξ(1) and this is actually ξ(2). So, this 𝐺𝑛 actually resembles the Jacobian matrix of 

G, but it is not exactly G, but one interesting thing that we can observe here is as 𝑛 → ∞ your 

sequence 𝒙𝑛 converges to say 𝑥∗ then you can see that ξ𝑛
(1)

 will also converges to 𝑥∗ and ξ2
(1)

 

will also converges to 𝑥∗. Why it is so? You can see that ξ𝑛
(1)

 and ξ𝑛
(2)

 are lying on the line 

segment of 𝒙𝑛 and 𝑥∗. 

 

So, that is what we have seen when we were expanding g in the Taylor formula. Therefore as 

𝒙𝑛 tends to 𝑥∗ by the Sandwich theorem you can see that ξ𝑛 will also converges to 𝑥∗ Therefore, 

in the limiting case everybody will have 𝑥∗ as the argument. That is all the elements of this 

matrix will be evaluated at 𝑥∗ in the limiting case. So, in the limiting case this 𝐺𝑛 will be 

precisely the Jacobian of the matrix g evaluated at the fixed point 𝑥∗ of this function g. 
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And as I told in the previous slide, we can write our equation in the vector notation like this. 

Remember this is the error vector at the n + 1th iteration that is equal to 𝐺𝑛𝒆𝑛. Remember this 

is a matrix and here you see this is a matrix and this is a vector. Therefore, the right hand side 

is the product of matrix and vector and that is actually a vector. Now to see the convergence of 

the iterative method we have to take the norm of this equation on both sides. And then we have 

to see how this matrix behaves. 
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Let us state the convergence theorem of the fixed point method for a system and we will omit 

the proof of this theorem. The theorem says that let D be a closed bounded and convex set in 

ℝ2. So, if you recall what is mean by a convex set? By convex set we mean that the set D should 



be in such a way that you take any two points in the set D and draw the line segment joining 

these two points. 

 

That line segment should entirely lie in that set and this should happen for any pair of points. 

So, suppose if you take a set like this, this is not convex because if you take two points like this 

and draw the line segment that line segment will not entirely lie in the set D. So, this is used in 

the proof of this theorem. That is why we are assuming. 
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Anyway, we will omit the proof for this course. The second assumption is that we will assume 

all the components of the vector g are as continuously differentiable functions at all the points 

in the domain D and further we assume that the iteration function g is a self map. If you recall 

we now know why we are assuming all these conditions on g. At least in the case of single non-

linear equation we have studied all these properties in full details. 

 

And then if you take the maximum of the matrix norm remember this is the subordinate matrix 

norm and we are just restricting it to the 𝑙∞ norm that does not matter you can use any norm. 

For easy handling in the proof it is better to have the 𝑙∞ norm. That is why we have taken this 

and if you take the maximum of the 𝑙∞ norm of G then that should be less than 1. 

 

Remember this is the contraction condition. Then the theorem says that g has a unique fixed 

point in the domain D. Remember the existence comes from the continuity of the function g and 

the self map and the uniqueness comes from the assumption that g is a contraction map. Then 

for any initial condition 𝒙0 ∈ 𝐷. That is if you start your iteration by taking 𝒙0 in the domain D 



then the iteration sequence 𝒙𝑛 will be well defined and all the terms of the iterative sequence 

will lie in the domain D. 

 

And further 𝒙𝑛 will converge to the fixed point 𝑥∗ in D and further we also have this estimate 

which tells us the order of convergence of this fixed point iteration method is actually 1. That 

is it has a linear order of convergence. So, you just keep your knowledge that you had in the 

case of single non-linear equation and just see this it is only the vector notation but idea is the 

same as we have studied in the case of single non-linear equation. 

 

However, proof will use some multivariable calculus ideas therefore we will omit the proof of 

this theorem. Now the question is can we improve the order of convergence by suitably choosing 

our iterative function g? Again if you recall we have done such an exercise in the case of single 

non-linear equation again the idea goes very much similar to that. 
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Let us see we will now see how to choose g for a given system of non-linear equation so as to 

faster the convergence. For that we will now take g that is our iteration function as 𝒙 + 𝐴𝒇(𝒙) 

and look for the fixed point of this function. So, this is your 𝒈(𝒙) and you are looking for the 

fixed point of 𝒈(𝒙). That is you are looking for the root of this non-linear equation, where A is 

a matrix that needs to be determined in order to faster the convergence. 

 



If you recall, how can we make a faster convergence in the single equation. Let me quickly 

recall that we had 𝑙𝑖𝑚
𝑛→∞

|𝑥𝑛+1−𝑥∗|

|𝑥𝑛−𝑥∗|
= 𝑔′(𝑥∗). That is what we have obtained. Now in order to have 

higher order convergence here we need to choose g such that 𝑔′(𝑥∗) = 0. 

 

That is the idea the same idea here instead of 𝑔′ in the single equation. Now we will have the 

Jacobian of the vector valued function g. So, that is the only difference that we will have in our 

present case. Let us see we will find the Jacobian of this iterative function and see how it looks 

like. 
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You can see that the Jacobian of this function is 𝒈(𝒙) and it is given by the 𝑛 × 𝑛 identity 

matrix 𝐼 + 𝐴𝐹(𝒙), where F is the Jacobian of the function 𝒇(𝒙). So, that is how the Jacobian 

will look like. 
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And if you go back recall that the Jacobian of the function 𝒇(𝒙) is given by this matrix. Now 

how to get the faster convergence. Precisely we have to look for that iterative function g such 

that this is equal to 0. That is the idea which is similar to what we had in the single equation 

case. 
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So, therefore we will look for the iteration function g such that norm of ||𝐺𝑛||∞ = 0. Let us try 

to achieve that for our initial guess 𝒙0. Now how you will get, remember 𝒈(𝒙𝟎) = 𝐴𝐹(𝒙0). 

Now we want norm of this to be equal to 0. That should be the case when the matrix itself is the 

0 matrix. Remember this is one of the conditions of the matrix norm. 

 

So, I am just using that in order to have the matrix norm. Remember this is the subordinate 

matrix norm. So, in order to have the matrix norm equal to 0, I should have my matrix itself as 

0. So, if this matrix has to be 0 it means my 𝐴 = −(𝐹(𝒙0))
−1

. So, that is how I will get this 

expression to be 0. So, therefore in order to have this which will actually make my fixed point 

iteration sequence to have a higher order of convergence. 

 

In order to have this, I need to choose my 𝐴 = −(𝐹(𝒙0))
−1

 and this I will do for each iteration. 

That is, I will propose my A just to have the notation 𝐴𝑛 here because I am going to change my 

A in every iteration. Therefore, I will have 𝐴𝑛 which is defined as −(𝐹(𝒙𝑛))
−1

 where F is the 

Jacobian of the vector valued function f. Therefore, my actual, iteration formula that is fixed 

point iteration formula is given like this. 

 

Remember we have taken it as 𝑥𝑛+1 = 𝑥𝑛 + 𝐴𝒇(𝑥𝑛) and now I have taken A as this expression, 

therefore this is my iteration formula. Given 𝒙0 now I can generate my iteration formula for n 

= 0 which gives me 𝒙1, n = 1 that gives me 𝒙2 and so on. You can just see that this is very much 

similar to what we defined as Newton-Raphson method in the case of single non-linear equation. 

 



In the case of single non-linear equation, the Newton-Raphson method looks like this 𝑥𝑛 −

𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 and this seems to be a natural extension of this formula to a system of non-linear equation 

and that is why this method is called Newton's method. 
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Let us do an example. Consider this system of equations and we are interested in finding an 

isolated root of this system. For that we will use the Newton's method with 𝒙0 given by this 

vector. As a first step we have to compute (𝐹(𝒙))
−1

, because that is involved in our formula. 

So, first we will find the Jacobian of the matrix F. Remember the vector f is nothing but (𝑓1, 𝑓2). 

 

Therefore, the Jacobian of this function f is given by this formula and now 𝑓1 is given like this 

and 𝑓2 is given like this. From there you can compute each of the elements of this matrix and 

they are given like this. So, we found F. 
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Now we have to find the inverse of that matrix and that is given like this. Once you find the 

inverse of the Jacobian matrix F you can now go to set up your formula for the Newton's 

iteration. Now for each 𝒙𝑛 therefore you have to find this matrix, for 𝒙0 the matrix is given like 

this. 
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Therefore, to compute 𝒙1 which is component wise written like this and that is given by 𝒙0 

which is this into (𝐹(𝒙0))
−1

. So, remember this is obtained from the inverse of the Jacobian 

matrix times 𝐹(𝒙0). So, that is what is this and therefore the first iteration formula is given like 

this. Now once you have this idea you can compute your 𝒙1 and that is given like this. 

 

Now once you have 𝒙1 you then have to find 𝐹(𝒙1). Once you find this matrix then you have 

to find the inverse of that. Once you find the inverse of that then you can set the expression for 



𝒙2 that is given by 𝒙1 minus this inverse matrix into the vector 𝒇(𝒙1). Like that you can keep 

on going as long as you want to go. So, this is how we can implement the Newton's method for 

a system of two equations. 
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Let us take a small application of this Newton's method. Here we would like to find an extremum 

for the given real valued function f defined on ℝ𝑛. So, this is what is called the unconstrained 

optimization problem. We will assume that the function f is continuous function and recall that 

a point 𝒙∗ is called a strict local minimum. Similarly, you can also define for local maximum. 

 

A point 𝒙∗ is called a strict local minimum of f if 𝑓(𝒙) > 𝑓(𝒙∗). Suppose you have the function 

like this, I am just showing it in the case of function in ℝ then this is a local maximum and this 

is the local minimum and this is local maximum and so on because you just have to have this 

condition in a small neighbourhood of 𝒙∗. 

 

Suppose this is your 𝒙∗ then you can see that in a small neighbourhood of this 𝒙∗ this is the 

maximum. So, therefore this is a local maximum and similarly you can see that this is a local 

minimum and so on. So, similarly you can also define what is mean by local maximum. 

(Refer Slide Time: 28:18) 



 

Now from the calculus course you can see that a necessary condition for 𝒙∗ to be a strict local 

minimum or maximum is that this partial derivative should be 0, thus we have to set a non-

linear system of equation like this. So, that an isolated root of this system will be a local 

maximum or minimum of the given function. 
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So, let me write it in the vector notation. If you see this gives you the gradient vector. Therefore, 

I am writing my non-linear system as ∇𝑓(𝒙) = 𝟎 vector, where the gradient is given like this. 

This is precisely what I am writing this system in the vector notation. Now we have to find an 

isolated root of this system. For that we can use the Newton's method to obtain an approximation 

to it. 

 



And the Newton's method is given by this formula where H is the Hessian matrix for the function 

f. If you recall in our first discussion, we had a 𝒇 that is the function from ℝ2 → ℝ2 and we had 

Jacobian of this and its inverse is used in the Newton-Raphson method. Now what we are doing 

is there is a slight confusion in the notation that we are still using the notation f now which is a 

function from ℝ2 → ℝ. 

 

And we want to find a local maximum or minimum for this function. For that what we are doing 

is we are setting up this system ∇𝑓 = 0. So, that is what in the unconstrained optimization we 

are doing. In unconstrained optimization we are given a real valued function defined on ℝ2, in 

general it can be ℝ𝑛 and then to find the local maximum or minimum of this function we have 

to set this non-linear equation. 

 

Therefore, you have to apply the Newton-Raphson method for this equation just like how you 

applied the Newton-Raphson method for this equation 𝑓(𝑥) = 0 in our previous discussion. 

Similarly, you have to now apply this Newton-Raphson method for this equation and therefore 

you have to find the Jacobian of ∇𝑓. Jacobian of ∇𝑓 is nothing but the Hessian matrix of your 

given function f. So, that is why we are having this and that is given by this formula. 
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So, once you have the Hessian matrix then you know how to set up the Newton's method 

iterative sequence and it is given like this. Just follow the Newton's method that we have 

introduced in our previous slide. Note that if 𝒙∗ is a stick to local minimum of f then Taylor 

formula can be used to show that the Hessian matrix is non-singular. 

 



Therefore, you can always invert this matrix and therefore H is non singular in a small 

neighbourhood of 𝒙∗ and therefore you can always invert this matrix. 
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Again, let us quickly see an example. Now we are given this function, this is a real valued 

function defined on ℝ2. Now we want to find a local maximum or minimum we will call it as 

local extremum of this function. For that first you have to set up your non-linear equation. For 

that you have to find the gradient of this function f and it is given like this. Therefore, you have 

to set up the Newton's iterative formula for this system. So, you have to find the Jacobian of 

this vector. 
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And that will be the version of your given function f and that is given by this matrix. Once you 

have this you can find the inverse of this matrix and that is given like this. Once you have the 



inverse of the Hessian matrix you can set up the Newton's method and that is given like this. 

Now once you have this then you can start with the initial guess and you can go on computing 

the Newton's iterative sequence. 

 

And if that sequence converges it will converge to a local extremum of the given function 

𝑓(𝑥1, 𝑥2) equal to this expression. So, that is the idea. With this our discussion on non-linear 

equation is complete. I thank you for your attention. 


