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Hi, we are discussing iterative methods for approximating an isolated root of a non-linear 

equation. In this we have covered bisection method, Regula Falsi method and secant method. 

In this lecture we will discuss Newton-Raphson’s method. 
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Let us first get a motivation for the Newton-Raphson’s method starting from the secant method. 

If we recall in the last class, we have proved that the order of convergence of the secant method 

is 1.62. Now the question is can we modify this method to get a quadratic convergence? The 

answer is yes. Now the question is how to do that? 
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Let us quickly recall from the secant method you can see that for a large n if the sequence is 

converging then you can see that 𝑥𝑛−1 will approach 𝑥𝑛. In that case the expression given like 

this can be more closer to 𝑓′(𝑥𝑛), because as n increases you can see that 𝑥𝑛−1 is approaching 

to 𝑥𝑛 and therefore this is actually equal to 𝑙𝑖𝑚 𝑥𝑛−1 → 𝑥𝑛. Therefore, as n increases this term 

will be more like 𝑓′(𝑥𝑛). 

 

Now look at the formula for secant method. You can see that the secant method involves 1 by 

this term, you can see that is what is, sitting here 1 divided by this term is what is given here. 

Therefore, you can see that this term is more behaving like 1/𝑓′(𝑥𝑛) for large n provided the 

sequence is converging. Now the question is why not we replace this term by 𝑓′(𝑥𝑛) itself right 

from the first term of the sequence. That is instead of having this term you just replace that by 

1/𝑓′(𝑥𝑛). 

(Refer Slide Time: 02:56) 



 

And that is what is called the Newton-Raphson’s method. Newton-Raphson’s method is highly 

preferred in the practical applications mainly because of the two reasons. One is that the 

Newton-Raphson’s method has quadratic convergence. We will also prove this later in this 

lecture. Also, Newton-Raphson’s method gives us a process called linearization process. This 

is particularly very important because in many applications we come across complicated non-

linear models. 

 

One good idea for these models is to first look for the linearized model of those models and 

then recovers the non-linearity through an iterative procedure. A Newton-Raphson’s method is 

precisely based on this idea. Therefore, understanding Newton-Raphson’s method is very 

important. 
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Newton-Raphson’s method is first introduced by the well-known scientists Sir Isaac Newton. 

He formulated this method for obtaining roots for polynomials, he first started with an initial 

guess and then formulated sequence of error corrections and this way he obtains the roots of 

polynomials. He introduced this procedure both for numerical computation and also for 

algebraic calculations. 

 

In the case of algebraic calculations, he in fact showed that he can recover the Taylor polynomial 

of a given non-linear function, but his procedure is quite complicated and that was further 

simplified by a mathematician called Joseph Raphson, not much is known about this 

mathematician, but he gave a much simpler idea of the method which was introduced by 

Newton. 

 

But he also formulated the method for polynomials. Both Newton and Raphson never connected 

this method to calculus and gave a closed form of the formula that we have shown in the last 

slide, it was Thomas Simpson who connected this idea to calculus and gave the formula that we 

showed in the previous slide and he also introduced this method to solve any non-linear 

equation. 
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With this small historic note let us go to give a formal derivation of the Newton-Raphson’s 

method. Let us start with the initial guess 𝑥0. Now around that point 𝑥0 let us write the Taylor's 

formula for the function 𝑓(𝑥). If you recall 𝑓(𝑥) where x is in a small neighborhood of 𝑥0 can 

be written as the Taylor polynomial of order 1, 𝑇1(𝑥) plus the remainder term. 
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Now if you just neglect this remainder term then you can see that 𝑓(𝑥) is well approximately 

equal to this linear polynomial. So, this is what we meant by linearization of a non-linear 

function. The non-linear term is inbuilt in this expression which is unknown because this ξ is a 

unknown quantity lying between 𝑥0 and x but the non-linearity is inbuilt in this expression 

which is neglected. 

 

In that way we are only taking the linear part of the function f and this idea is what we call as 

the linearization. Now the idea is instead of looking for the root of the equation 𝑓(𝑥) = 0, we 

will first look for the root of this polynomial 𝑇1(𝑥) = 0. You can find the root of this polynomial 

without any effort. 
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Let us call the root of this polynomial by 𝑥1. 
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And this 𝑥1 can be written as 𝑥0 −
𝑓(𝑥0)

𝑓′(𝑥0)
, this can be obtained by directly rewriting this linear 

polynomial equation. That is how we get the first term of our iteration sequence 𝑥1. Now from 

here you know how to find the next term of the iteration that is 𝑥2; how will you find it? You 

will plug in this 𝑥1 into the right-hand side expression replacing 𝑥0 by 𝑥1 and you will get 𝑥2. 

 

Once you get 𝑥2 again you plug in 𝑥2 on the right-hand side get 𝑥3 and like that you can now 

generate the sequence 𝑥𝑛. Let us see the geometrical interpretation of the Newton-Raphson 

method. Let us take a function f whose graph looks like this. This is 𝑦 = 𝑓(𝑥) and it has a simple 

root r here. Now what we are doing is we are starting our initial guess as 𝑥0 and what we are 

doing is instead of going along this non-linear function we are going along this straight line. 

 

What is this straight line? This straight line is precisely the tangent line at the point 𝑥0. So, this 

tangent line if you recall, it is given by𝑦 = 𝑓(𝑥0) + 𝑓′(𝑥0)(𝑥 − 𝑥0). So, this is the equation of 

this tangent line and what you are doing precisely is taking 𝑦 = 0, that is how you are getting 

this equation and correspondingly, this x is taken as 𝑥1. What is the geometrical meaning of 

this? This is precisely the point of intersection of this tangent line with the x-axis. 

 

That is 𝑥1 is precisely the point of intersection of this tangent line with the x-axis. That is the 

geometrical interpretation of this formula. Now if you generalize this you will get the formula 

for Newton-Raphson’s method. 
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Let us put the Newton Raphson’s method in the form of an algorithm. For that the inputs are 

the function f which defines the equation 𝑓(𝑥) = 0 and since we want 𝑓′(𝑥) is involved in our 

formula, therefore we will assume that 𝑓′ exists and for the theoretical reason we also assume 

that 𝑓′ is also continuous function. Also, generally we are interested in computing the simple 

root of our equation. This is also just for the sake of theoretical purpose. 
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And then we have to take the initial guess that is a real number 𝑥0. Generally, from the 

implementation point of view 𝑥0 has to be chosen arbitrarily but theoretically we have to choose 

𝑥0 sufficiently close to the root r in order to have the convergence, but that cannot be achieved 

practically because we do not know r. Therefore, this condition is only theoretically feasible 

however practically we have to choose 𝑥0 arbitrarily. 
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Once we are given f and 𝑥0 then the algorithm goes like this. For any given 𝑥0, you will compute 

the iterations using this formula. That is, given 𝑥𝑛 you will find 𝑥𝑛+1 using this formula, where 

n runs from 0 to infinity. So, if you take n = 0 you have 𝑥0 −
𝑓(𝑥0)

𝑓′(𝑥0)
 and that gives you 𝑥1. Then 

once you get 𝑥1 you will take n = 1. Therefore, this expression will give you 𝑥2 then and so on. 
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So, in this way you can generate a sequence for any given n and on a computer this procedure 

can go on without n, but practically we have to stop the iteration at some n. For that we need a 

stopping criterion. If you recall while discussing regula falsi method, we have discussed some 

stopping criteria in order to break our iteration computationally. One can follow any one of the 

stopping criteria we have introduced in that lecture. 

 



For instance, a relative Cauchy criterion is preferred of course along with the residual error 

criteria also, but practically it is often enough for us to check the relative Cauchy criteria to stop 

the iteration. 
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Let us take an example. Let us take this equation 𝑠𝑖𝑛3 𝑥 +
1

2
𝑥10 − 0.85 = 0. Here 𝑓(𝑥) is 

nothing but this expression. Once this is given, we have to first compute 𝑓′(𝑥). Remember 

𝑓′(𝑥) is involved in our formula. Therefore, we have to compute first 𝑓′(𝑥) and then also to 

start the iteration we need an initial guess. I have chosen in this example the initial guess 𝑥0 as 

1.25. 

 

Now we are ready to set up our iterative procedure recall the Newton-Raphson’s method 

formula that generates the iteration sequence is given by this. In our example this can be written 

like this; where this is our 𝑓(𝑥) and the denominator is 𝑓′(𝑥). So, that is what we have 

substituted from this expression with 𝑥 = 𝑥𝑛 and we got the iterative formula for the given 

equation using Newton-Raphson’s method. 

 

Now let us go to compute the iterations; for that first take 𝑥0 and plug in 𝑥0 into this expression 

with n = 0. Remember sine 𝑥0 is computed with radians and that will give us 𝑥1. 
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Let us also see this geometrically. The graph of the function f given like this is shown in blue 

solid line and the root that we are interested is highlighted here in green colour and its value is 

approximately 0.9529 and remember we decided that we will start our iteration with 𝑥0 equal 

to 1.25 and it is here. With all this we can now compute 𝑥1 using this expression and the value 

of 𝑥1 is given like this. 

 

And let us see the geometrical interpretation of this 𝑥1, we started with 𝑥0 and you have to take 

this point and draw the tangent line at this point. If you recall we have already mentioned this 

geometrical interpretation in our previous slide and what is 𝑥1? 𝑥1 is precisely the point of 

intersection of this tangent line with the x-axis and that is given by this point. Once you get 𝑥1 

you go back to that expression. 

 

Now replace 𝑥𝑛 by 𝑥1 in this expression and that you can put the value of 𝑥1 into this expression 

and you can use a calculator or computer to obtain the value of this expression with 𝑥1 is equal 

to 1.12767 and that gives you 𝑥2 as approximately 1.02953. Geometrically what is happening? 

This was 𝑥0 where we started from there we approached to 𝑥1 and now to get 𝑥2 you have to 

take this point, draw the tangent line and see the point of intersection of that tangent line with 

the x-axis and that is your 𝑥2. 

 

This is the geometrical viewpoint but analytically you simply take 𝑥1, substitute in the formula 

and get the value 𝑥2 by computing the expression. Once you get 𝑥2 again substitute 𝑥2 into the 

Newton-Raphson’s formula for our example and that gives you 𝑥3. What is 𝑥3? Again, you take 



this point 𝑥2, draw the tangent line which is given like this and see the point of intersection of 

this line and that is your 𝑥3. 

 

Now you see you started from 𝑥0 you got 𝑥1 and from there you got 𝑥2 and from there you got 

𝑥3, you can see how this sequence is converging towards the root of the equation. So, that is the 

geometrical viewpoint of the Newton-Raphson’s method in this particular example. 
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Let us go to the next example. Let us take the equation 𝑠𝑖𝑛 𝑥 + 𝑥2 − 1 = 0 and let us take the 

initial guess as 𝑥0 = 1. If you recall we have taken this example to compute a simple root using 

secant method also, just to compare Newton-Raphson’s method with secant method I am 

considering the same example and if you recall in secant method, we have taken 𝑥0 = 0 and 𝑥1 

= 1. 

 

Recall in secant method we have to give two initial guesses. Therefore, we have chosen the 

initial gases like this, but in Newton-Raphson’s method it is enough to give one initial guess 

therefore I am taking 𝑥0 as 1. Now let us see how Newton-Raphson’s method sequence goes 

on. I have computed first three iterations of the Newton-Raphson’s method in this example 

starting with 𝑥0 = 1. 

 

You can see that in the third iteration we got the root exactly up to around 6 significant digits. 

One can see that the root of this equation is up to 6 significant digits is given like this and we 

have captured the root exactly up to this accuracy very well with just three iterations. 
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If you recall in secant method the third iteration gave us this value which is still slightly away 

from the root. So, this is what we meant by saying that Newton-Raphson’s method is slightly 

faster than the secant method. If you recall we have proved that the order of convergence of 

secant method is 1.62. In fact, we can prove that the order of convergence of Newton-Raphson’s 

method is 2. 

 

That is Newton-Raphson’s method has quadratic order of convergence and in this example also 

you can see that Newton-Raphson’s method is going little faster than the secant method. 
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With this, let us now state the convergence theorem for Newton-Raphson’s method. Let f be a 

𝐶2 function, recall to set up the Newton-Raphson’s iteration we just need 𝑓′(𝑥𝑛). That is, we 

just need the first derivative of the function f, but for the convergence we need one more order 



of smoothness of f that is why we have assumed that f is a 𝐶2 function and also we will assume 

that the root r which we are interested in is a simple root. 

 

It means what? It means 𝑓′(𝑟) ≠ 0. If these two conditions hold for our function f then the 

theorem concludes that there exist a small neighbourhood of the root r. That is what we mean 

by saying that there existed δ such that [𝑟 − δ, r + δ] is a small neighbour δ neighbourhood of 

r and if you start your iteration that is if your initial guess is taken in this small neighbourhood 

remember we have to find this neighbourhood δ. 

 

There exist means we have to find this δ  neighbourhood, such that if you start your iteration 

with your initial guess 𝑥0 in this neighbourhood then everything will go nicely. That is what the 

theorem says. What is mean by everything will go nicely let us see. First thing is each term of 

the Newton-Raphson’s sequence is well defined, what is mean by this? What happens if you 

started with a 𝑥0 then you went to 𝑥1. 

 

Then you went to 𝑥2, like that you kept on going, at some 𝑥𝑛 you see that your 𝑥𝑛+1 is infinity 

then what happens? Then the Newton-Raphson’s iteration sequence is not well defined. The 

theorem says that if you start your initial guess pretty close to the root then this will never 

happen. That is what it says. The question is when such situation will happen? Let us see 

suppose we are working with a function f whose graph is like this. 

 

You can see that it is a nice smooth function; at least visually you can see that and suppose we 

are interested in capturing this root r. Now you started with some 𝑥0 say and you started 

computing 𝑥1, 𝑥2 and so on at some n say 𝑥𝑛 is this then what happens, your 𝑓(𝑥𝑛) is this and 

now 𝑥𝑛+1 is nothing but the point of intersection of the tangent line with x-axis. What is this 

tangent line? Tangent line is parallel to the x-axis. 

 

And therefore, it never intersects x-axis. That means you can never get 𝑥𝑛+1 at all if you face 

such a situation. This is a geometrical illustration. What is happening analytically; you see in 

this case you will have 𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
. What is 𝑓′(𝑥𝑛) here that is equal to 0. So, this 

becomes 0 here and that will give you infinity. This is how the Newton-Raphson’s iteration 

sequence may fail to exist. 

 



The theorem says that, I can find a small neighbourhood of r as long as I start my initial guess 

within that neighbourhood then such a situation will never occur. That is what it says. Suppose 

you see if you restrict yourself to this neighbourhood and start your 𝑥𝑛 here, 𝑥0 here then you 

see your 𝑥1 will be somewhere here and your 𝑥2 will be somewhere here and your 𝑥3 will be 

somewhere here. 

 

Everything will lie in this interval only. That is all your 𝑥𝑛’s will lie in this interval only and 

they all will be well defined. So, that is what we are going to see. So, as long as you start your 

iteration with the initial guess 𝑥0 in a small neighbourhood like this then your Newton-

Raphson’s iteration sequence will be well defined. 
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The sequence 𝑥𝑛 will remain within this interval. This is what I have shown geometrically in 

the previous slide and the important point is that the sequence will also converge to the root and 

finally this gives us the quadratic convergence of the Newton-Raphson’s method. It means what, 

this quantity is equal to constant, some finite number that is what we have to show in order to 

conclude that the sequence converges with this order. 

 

You can see now here it is 2, therefore the order is 2. Why this term is finite because we assumed 

𝑓′(𝑟) ≠ 0 and 𝑓′′ is a continuous function. That is what we assumed here that f is a 𝐶2 function 

and we are always restricting to a closed and bounded interval therefore this is a finite quantity, 

this is also non zero finite and therefore this entire thing will be finite. 

 



So, if you prove this expression, it precisely means that the Newton-Raphson’s iterative 

sequence converges quadratically. I hope you understood the statement of the convergence 

theorem of the Newton-Raphson’s method. We will prove this theorem in the next class, thank 

you for your attention. 


