
Numerical Analysis 

Prof. S. Baskar 

Department of Mathematics 

Indian Institute of Technology – Bombay 

 

Lecture – 31 

Nonlinear Equations: Secant Method (Convergence Theorem) 

 

Hi, we are discussing Secant Method for capturing isolated roots of a non-linear equation. 
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In the last class we have introduced the method and in this class we will study the convergence 

theorem of the secant method. We have two assumptions on the convergence of the secant 

method. One is that the function f which defines our equation, is a 𝐶2 function. What is mean 

by a 𝐶2 function? Well, f should be a continuous function, 𝑓′ should exist and 𝑓′ should also 

be a continuous function. 

 

And 𝑓′′ should exist and 𝑓′′ should also be a continuous function. This is what we meant by 

saying f is a 𝐶2 function and also we have to assume that the root that we are going to capture 

denoted by r is a simple root of the non-linear equation 𝑓(𝑥) = 0, what it means? It means 

𝑓′(𝑟) ≠ 0. That is what we mean by saying that the root r is a simple root.  

 

If these two assumptions are satisfied by the function f, then we can say that there exists δ, such 

that for every 𝑥0 and 𝑥1 in the neighbourhood of r, that is the δ neighbourhood of r. We can 

say that the secant method iterative sequence is well defined and the second thing is that we 



can say that the sequence belongs to the interval [𝑟 − δ, 𝑟 + δ]. That is, the δ neighbourhood 

from where we have taken our initial guesses.  

 

And the third one which is what we are mostly interested in, is that the sequence 𝑥𝑛 will 

converge to r as n tends to infinity. And finally, the conclusion is also that the order of 

convergence of the secant method is something approximately 1.62. That is what we meant by 

saying that  𝑙𝑖𝑚
𝑛→∞

|𝑥𝑛+1−𝑟|

|𝑥𝑛−𝑟|α  is equal to some constant. Remember, 𝑓′(𝑟) ≠ 0. 

 

Therefore, this is some constant, non-negative constant. So, if you recall what is mean by the 

order of convergence, we say that a sequence converges with order at least α, if there exist a 

constant such that |𝑥𝑛+1 − 𝑟| is less than or equal to the constant time |𝑥𝑛 − 𝑟|α. Another way 

of defining order is  𝑙𝑖𝑚
𝑛→∞

|𝑥𝑛+1−𝑟|

|𝑥𝑛−𝑟|α   is equal to some constant.  

 

So, this is what the condition that we are putting here and that says that the secant method is 

going to converge with order α and in fact, in our derivation. We will also get the value of α as 

(√5 + 1)/2 which is approximately equal to 1.62. That shows that the secant method has a 

super linear convergence. In fact, bisection method has a linear convergence. In that way, you 

can see that secant method is slightly faster than bisection method. 

 

Of course, bisection method has its own disadvantage, also that it is a bracketing method, 

whereas secant method is an open domain method. Therefore, the initial guesses can be chosen 

arbitrarily in secant method. This is a very good advantage of secant method. In addition to that 

it is also nice to see that secant method has super linear convergence. Let us try to prove this 

theorem if you are not very good at calculus, maybe in the first go you can omit this proof. 

 

However, I will strongly recommend you to go through the proof of this theorem very carefully. 

Because the techniques that are used in proving this theorem is very important for you to do 

any convergence analysis on an iterative method. Especially iterative method for non-linear 

equations. Therefore, it is very important for you to understand the proof of this theorem, at 

least once. 
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With this note, let us go into the proof of this theorem. As a first step, let us claim that for every 

n = 2, 3 and so on, we can find a ζn and a ξ𝑛 such that this expression holds. That is 

(𝑥𝑛+1 − 𝑟)𝑓′(ξ𝑛) =
(𝑥𝑛−1−𝑟)(𝑥𝑛−𝑟)

2
𝑓′′(ζ𝑛). This expression will be used in arriving at all the 

conclusions that we have listed in the statement of the theorem. 

 

Therefore, first deriving this expression is very important for us. Let us see how to derive this, 

note that to derive this, we have to also assume that 𝑥𝑛 is not equal to 𝑥𝑛−1 and both are not 

equal to r. Now, let us start our derivation with the formula of the secant method, recall that 

the secant method is given by this expression. And this expression can be rewritten like this 

you can easily see this. 

 

Now, what I will do is, in this expression I will replace 𝑥𝑛+1 by x and then I will define this 

expression that is the left-hand side expression as a function denoted by 𝑔(𝑥). Now, you can 

see that if you plug in 𝑥 = 𝑥𝑛+1 then clearly this is equal to 0 because that is the way we have 

defined the function g. Therefore, g has a root which is 𝑥𝑛+1. So, let us keep this in mind and 

go ahead. 

 

Also see that g is a linear polynomial so, it depends on x with degree 1. So, these are the two 

observation that is g is a linear polynomial and g has the root 𝑥 = 𝑥𝑛+1. 
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With these two properties in mind, let us go to define a function ψ = 𝑓(𝑡) − 𝑔(𝑡). Remember 

ψ is a function of t where we have fixed 𝑥𝑛−1 and that is not equal to 𝑥𝑛, Of course, both of 

these are not equal to r and now we are also fixing x in such a way that x is not equal to any of 

these two numbers. And then defining ψ as a function of t, therefore, x is fixed as far as this 

expression is concerned that you keep in mind. 

 

And how ψ(𝑡) is defined? ψ(𝑡) is defined with this expression. And now let us see some 

important properties of the function ψ. First thing is ψ is a 𝐶2 function. Why it is so? Because 

f is a 𝐶2 function this is what we have assumed in our theorem and g is a linear polynomial. 

And also you can see that this third term involves a quadratic term. Therefore, ψ is a 𝐶2 

function very clearly. 

 

Also you can check that ψ(t) = 0. That is this equation ψ(𝑡) = 0 has three distinct roots. What 

are they? One is 𝑡 = 𝑥 is a root of this equation, 𝑡 = 𝑥𝑛−1 is the root of this equation and 𝑡 =

𝑥𝑛 is a root of this equation. They all are distinct because we have chosen 𝑥0 = 𝑥𝑛−1 and that 

is not equal to 𝑥𝑛. 
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Now, apply Rolle’s Theorem. What Rolle’s Theorem says? If you have a function which has 

three roots something like this then it is derivative that is 𝜓′(t) = 0 will have at least two roots, 

distinct roots that is what Rolle’s theorem says. Because you have three distinct roots for 𝜓. 

Therefore, in between these two if you apply Rolle’s theorem, you will see that there exist at 

least one point at which 𝜓′(t) = 0. 

 

And similarly, in between these two points, you can find at least one point at which 𝜓′ vanishes. 

So, Rolle’s Theorem says that there exists at least two points at which 𝜓′ vanishes. Now, 𝜓′ is 

something like this at least two points ξ1 and ξ2 at which 𝜓′ vanishes. Now, again apply Rolle’s 

theorem on 𝜓′ to see that there exists at least one point say η at which 𝜓′′vanishes. That is 

what the rules theorem, when applied to 𝜓′, will give us.  
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So, again applying Rolle’s Theorem on ψ′. We can get a ζ𝑛 such that ψ′′(ζ𝑛) = 0. That is what 

the Rolle’s Theorem says. 
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Now, we got ζ𝑛 now, what are we going to do with this? Let us see well, we got the ζ𝑛 let us 

compute ψ′′ from it is expression and plug in ζ𝑛 and see what is happening. You can see that 

ψ′′ is equal to 𝑓′′, and 𝑔′′ that is equal to 0 because g is a linear polynomial. Therefore, second 

derivative of g is 0. 

 

And remember this is a constant because x is not a variable for us as far as this expression is 

concerned. Therefore, this is a constant, so, do not differentiate it because we are differentiating 

with respect to t not with respect to x. And what will happen to this term? This term will simply 

give you 2, if you differentiate it twice. Therefore, we have ψ′′(𝑡) is equal to 𝑓′′(𝑡) minus this 

expression times 2.  

 

Now from there what you can write is 𝑓(𝑥) − 𝑔(𝑥) that is, this term, is equal to 1/2. 2 is going 

to the other side into this term is also going to the other side after shifting this, to the left-hand 

side. Therefore, we will get 𝑓(𝑥) − 𝑔(𝑥) =
1

2
(𝑥 − 𝑥𝑛−1)(𝑥 − 𝑥𝑛)𝑓′′(ζ𝑛). What I am doing? I 

am just plugging in 𝑡 = ζ𝑛 and then doing this simple manipulation to get this expression.  
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Now, let us see how to go ahead. I will put 𝑥 = 𝑟 in this expression. Remember I have chosen 

𝑥 ≠ 𝑥𝑛−1 ≠ 𝑥𝑛. Already, these two are chosen such that this is not equal to r. Therefore, I may 

choose my 𝑥 = 𝑟 that is not a problem for me. Now, when I choose 𝑥 = 𝑟 in this expression, 

you can see that this will go to 0 because 𝑓(𝑟) = 0. So, the first term will go off and you will 

have – 𝑔(𝑟) = 1/2 into instead of x, I am putting r here that is what I got here. 
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And now, let us see how it goes. If you recall, we have defined our g such that 𝑔(𝑥𝑛+1) = 0. 

This is how we have defined g in our first step. Therefore, I can as well, write this expression 

as 𝑔(𝑥𝑛+1)– this equal to this because this is just going to contribute 0 here. Therefore, no 

problem, I can write like this. And now what happens? I got this expression where g is 0 keep 

in mind. 

 



Now, what I will do is, I will put mean value theorem for this expression because 𝑥𝑛+1 is not 

equal to r. That is our assumption as well. Therefore, you can put the mean value theorem and 

get (𝑥𝑛+1 − 𝑟)𝑔′(ξ). There exists ξ between 𝑥𝑛+1 and r such that the left-hand side can be 

written like this. That is what the mean value theorem and that is equal to I am just keeping the 

right-hand side as it is. 
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Well, we got this expression now. Now, we will also see that 𝑔′(ξ) is equal to this. How will 

you get that? Will you directly differentiate the expression g that we have taken in the first 

slide? That is this one, differentiate with respect to x and put 𝑥 = ξ here. You will see that this 

is 0 because this is a constant. So, when you differentiate with respect to x this will be 0 and 

you will be left out with this term only. That is what I am writing 𝑔′(ξ) =
(𝑓(𝑥𝑛)−𝑓(𝑥𝑛−1))

(𝑥𝑛−𝑥𝑛−1)
.  
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Now, you apply the mean value theorem. For this term you can see that there exist a ξn between 

𝑥𝑛 and 𝑥𝑛−1. Such that this is equal to 𝑓′(ξ𝑛)(𝑥𝑛 − 𝑥𝑛−1). This numerator equal to this 

therefore, 𝑥𝑛 − 𝑥𝑛−1 will get cancelled and you will have 𝑔′(ξ) = 𝑓′(ξ𝑛). Now, you put this 

term into the expression that you got here. You will see that 𝑥𝑛+1 that is this term. 

 

Now, instead of 𝑔(ξ), you are putting 𝑓′(ξ𝑛) and the right-hand side is kept as it is. So, this is 

what we wanted to derive, so, our first part of the proof is over. We have derived an expression 

remember. This expression is basically coming from the secant method formula, how? We have 

taken the secant method formula from there we have defined g and through that we have 

derived this expression. 

 

Therefore, the secant method formula gives us a sequence. That sequence will surely satisfy 

this expression for some ζ𝑛 and ξ𝑛 that is what we have seen. 
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Now remember r is a simple root of our equation and 𝑓′ is continuous. It means what you have 

a function f say its graph, is like this and r is the root of the equation 𝑓(𝑥) = 0. This is the 

graph of the function 𝑓(𝑥) and we know that 𝑓′(𝑟) ≠ 0. Since, 𝑓′ is continuous by intermediate 

value theorem you can see that in a small neighbourhood of r, 𝑓′ will remain non-zero. 

 

That is what the intermediate value theorem tells us that is what we are writing here. You can 

find a small neighbourhood of r say [𝑟 − δ0, 𝑟 + δ0] in which the function 𝑓′ will remain non-

zero. Remember in the statement of our theorem, we have to find a δ neighbourhood of r.  

 

You remember we have to find a δ neighbourhood of r in which if you start your iteration, that 

is, if you choose your 𝑥0 and 𝑥1 in that δ neighbourhood then all these conclusions will hold. 

Therefore, our aim is to find such a δ. That is what we are trying to do now, so, the intermediate 

value theorem and the assumption that r is a simple root, will give us a δ. But remember this 

is not the δ that we want. We want something which is lesser than this. 

 

So, we have to choose some other δ suitably which is less than this δ, such that all our 

conclusion should hold. Now, the question is how to choose this 𝛿. That is the question let us 

see how are we going to get this δ? 
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Let us have some notation. Here. I am just assuming that I got a 𝛿 and then I am just defining 

the notation that is all. This is not something which I am deriving or something it is just a 



notation I am fixing m means the minimum of 𝑓′ over the 𝛿 neighbourhood that I am supposed 

to get now. So, 𝛿 is yet to be found but whenever there is a m it means I am just taking the 

minimum of 𝑓′ in that neighbourhood. 

 

And similarly, M is the maximum of 𝑓′′. Now, let us see how are we going to choose our 𝛿? 

This is where precisely I am going to choose my 𝛿. I will choose my 𝛿 in such a way that 

whenever I choose 𝑥0 and 𝑥1 in that neighbourhood such that 𝑥0 and 𝑥1 are not equal to r then 

the maximum of this term should be less than 1. So, this is how I am going to choose my 𝛿. 

 

Now, if I choose my 𝛿 in such a way then what happens? Let us see. Recall we have already 

derived this expression just as the first part of our proof.  
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Now I am going to use this expression. How am I going to use this expression? Well, I will 

take n = 1 in this expression. Then you can see that |𝑥2| because I took n = 1 and I took the 

modulus. And that is actually, going to be less than or equal to this term. Why it is so? You can 

see that this is less than or equal to ||𝑥2 − 𝑟|| into minimum of 𝑓′. What is minimum of 𝑓′? 

Minimum of 𝑓′ is denoted by m here and. 

 

Similarly, I will take the modulus on the right hand side and that is going to be less than or 

equal to I will replace this by the maximum. Therefore, I will have 
𝑀

2
|𝑥1 − 𝑟| that is, this term 

and |𝑥0 − 𝑟| that is this term because I have taken n = 1. Therefore, we have this inequality by 

taking n = 1. 
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And now what happens? Let us see this term is less than ϵ because ϵ  is taken as the maximum 

of these two. Therefore, this term is something less than ϵ  and the other term is surely less than 

or equal to δ why? Because 𝑥1 is chosen from the δ neighbourhood. Therefore, |𝑥1 − 𝑟| ≤ δ. 

Therefore, this whole quantity is less than or equal to ϵ δ and remember, ϵ  is less than 1. 

 

That is the way I have chosen my δ. So, therefore, with that δ, my ϵ is less than 1. Therefore, 

this is less than δ  and now what does this mean? This means that 𝑥2 belongs to the δ 

neighbourhood of r. That is what it means by saying that |𝑥2 − 𝑟| ≤ δ or may be less than δ  

means it is an open, interval. That is not important here 𝑥2 lies in this δ neighbourhood that is 

more important. 

 

And similarly, from here you can show that 𝑥𝑛 also belongs to this δ neighbourhood for each 

n. 
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So, if you go back, you can see that this is what we wanted to so, as one of the conclusions that 

the whole sequence belongs to the δ neighbourhood remember, this δ is chosen such that 

𝑓′(ξ) ≠ 0 ∀ ξ ∈ [𝑟 − δ, 𝑟 + δ]. This is how we have chosen δ, so, you keep that in mind. You 

can see that 𝑓′ is not equal to 0 in this interval. 

 

And therefore, 𝑓′ is either positive or negative in this neighbourhood it means f is a strictly 

monotonic function. If f is strictly monotonic then it has this situation where 𝑓(𝑥𝑛−1) is not 

equal to 𝑓(𝑥𝑛). Because the second conclusion says that all 𝑥𝑛’s belongs to this neighbourhood 

and since all these 𝑥𝑛’s are belonging to this neighbourhood, 𝑓′ will not vanish at 𝑥𝑛, it means 

𝑓(𝑥𝑛−1) will not be equal to 𝑓(𝑥𝑛). 

 

Because f will be a monotonic function. So, therefore, this conclusion is also done. Now, we 

have to prove the convergence and this order of convergence also. 
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Let us see how to prove this, so, we have already discussed this. Let us go to prove the 

convergence, to prove the convergence first, you observe that |𝑥2 − 𝑟| is less than or equal to. 
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We have already shown here, |𝑥2 − 𝑟| is less than or equal to this quantity. Now, I am 

multiplying both sides by 𝑀/2𝑚. Therefore, you will have a square here. That is what I am 

writing here 
𝑀

2𝑚
|𝑥2 − 𝑟| is less than or equal to (

𝑀

2𝑚
)

2

 into this. And now, if you recall, 

𝑀

2𝑚
|𝑥1 − 𝑟| is less than or equal to ϵ and another 

𝑀

2𝑚
|𝑥0 − 𝑟| is also less than or equal to ϵ. 

 

Therefore, this term is less than equal to ϵ2. Now, take 𝑥3, |𝑥3 − 𝑟| is nothing but 

𝑀

2𝑚
|𝑥1 − 𝑟||𝑥2 − 𝑟| and then you multiply both sides by 𝑀/2𝑚. And that will give you ϵ this 

is less than equal to ϵ and this is less than or equal to ϵ2. How we have just now proved here, 

therefore, this entire term is less than or equal to ϵ3. 

 

Similarly, you can see that 
𝑀

2𝑚
|𝑥4 − 𝑟| ≤ ϵ5 and so on. In general, you can write  

𝑀

2𝑚
|𝑥𝑛+1 − 𝑟| ≤ ϵqn+1. What is 𝑞𝑛+1? Well, 𝑞𝑛+1 is a sequence such that 𝑞𝑛+1 = 𝑞𝑛 + 𝑞𝑛−1. 

How can you see this? You can see that 
𝑚

2𝑚
|𝑥0 − 𝑟| ≤ ϵ.  

 

That is my ϵ to the power of 1 therefore, 𝑞1 = 1. Now, you take 
𝑚

2𝑚
|𝑥1 − 𝑟| which is less than 

or equal to ϵ1. Therefore, 𝑞2 is also 1 now 𝑞3 from here, you can see that 𝑞3 = 2 which can be 

seen as the sum of these two terms. Now, what is 𝑞4? 𝑞4 is coming from here 𝑞4 = 3 that can 

be seen as the sum of these two terms here. And what is 𝑞5? 𝑞5 = 5 that can be seen as the sum 

of these two terms. 

 



In general, 𝑞𝑛+1 is seen as the sum of it is immediate previous term that is, 𝑞𝑛 + the previous 

to previous term that is 𝑞𝑛−1 with understanding that 𝑞0 = 1. Maybe I should start with 0 here, 

1, 2, 3, 4 and so on. Sorry, therefore, 𝑞0 is 1, 𝑞1 is 1 and 𝑞2 onwards we are defining like this. 
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What is this sequence? This is the well-known Fibonacci sequence and once you realize that 

you have a Fibonacci sequence as the power of ϵ. Now, you recall that Fibonacci sequence 

tends to infinity, as n tends to infinity. Also recall that we have chosen our δ in such a way that 

ϵ is less than 1. Therefore, you have ϵ to the power of something and that is going to infinity, 

as n tends to infinity. 

 

That implies that the right-hand side goes to 0, as n tends to infinity. And what is on the left-

hand side? You have constant times this term this is fixed. Therefore, you can in fact push it to 

the right-hand side. And therefore, you can see that this term goes to 0, as n tends to infinity. 

That is precisely what we want, as the convergence. 
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Now all remains is to get the order of convergence. How are we going to get the order of 

convergence? Let us see again, I will recall what is the definition of order of convergence? I 

have already told this at the beginning of the lecture. The definition of the order of convergence 

is that there should exists a constant C such that |𝑥𝑛+1 − 𝑟| ≤ 𝐶|𝑥𝑛 − 𝑟|α. 

 

Then we say that the sequence converges with order at least α. That is what we have seen and 

that should happen, as n tends to infinity. Another way to define order of convergence is to use 

the following definition called asymptotic order of convergence. This says that  𝑙𝑖𝑚
𝑛→∞

this term 

should be constant. This both are often used for defining order of convergence. Let us try to 

derive or find the constant C such that this happens with an appropriate α. 
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Let us see both of this. Again, you start with the expression that we have derived at the 

beginning of the proof and then you just take this 𝑓′ on the other side with the understanding 

that 𝑓′ never vanishes in the neighbourhood that we are working with. Remember we are 

working with [𝑟 − δ, 𝑟 + δ]. This is the neighbourhood in which we are working. 

 

All our 𝑥𝑛’s belongs to this neighbourhood. Therefore, ξn which lies between 𝑥𝑛 and 𝑥𝑛−1 and 

also between r in whatever it is. It belongs to this interval therefore, 𝑓′(ξ𝑛) will not vanish. 

Therefore, you can just divide both sides by 𝑓′(ξ𝑛) and that gives you this expression. Now, 

take modulus on both sides and divide by |𝑥𝑛 − 𝑟|α. We have to find what is α but just take α 

and divide both sides. 

 

You can see when you take modulus, you are taking modulus here and also here, since you are 

dividing both sides by  |𝑥𝑛 − 𝑟|α, you will have  |𝑥𝑛 − 𝑟|1−α. Where alpha has to be chosen 

appropriately. 
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So, we have this expression. Now, what we will do is we will write this term in this form. I am 

just rewriting it with an appropriate β. That is all if that is so then what should be our β? You 

can see that β should satisfy that β should be equal to 1 – α. Why? Because  |𝑥𝑛 − 𝑟|β will 

come and that should be equal to 1 − α from this expression. 

 



Therefore, we want β to be 1 – α and in the denominator we have α into β that when you 

compare with this term, you want α into β to be – 1. Now, you just have to find α such that 

these two things happen simultaneously. 
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That implies that α should come as the root of this equation. Why? Because α  should be equal 

to – 1/β or β = – 1/ α that value of β, you can put here to get this equation. Therefore, the α  

that we want should come as the root of this quadratic equation. Remember this quadratic 

equation has two roots and one root is given like this and the other root of this quadratic 

equation is a negative number. 

 

We are concerned about the order of convergence. Therefore, we will not choose the negative 

value of the α. So, we will choose this α and this number will surely satisfy this expression 

which is precisely satisfied by the secant method. (Video Starts: 36:35) Because the 

expression that we have derived if you recall, we started with this expression. 

 

And this expression is derived from the secant method and from this expression only we have 

landed up with this and further rewritten that expression in this form and that is further written 

like this. Therefore, everything is coming from the secant method. And the α is therefore, 

chosen very naturally, from the secant method and that shows that the secant method, if it 

converges, will converge with order α. And what is this value? This value is approximately 

1.618. (Video Ends: 37:15) 
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All remains is to now, find the constant C. How will you find? Recall that ξ𝑛 will converge to 

r and also ζ𝑛 will converge to r. How can you see? You can see it from the sandwich theorem 

because how we have chosen ξ𝑛 and ζ𝑛? Well, ξ𝑛 and ζ𝑛 both lies between [𝑥𝑛, 𝑥𝑛−1]. But we 

know that 𝑥𝑛 converges to r that we have already shown and also 𝑥𝑛−1 converges to r.  

 

And these two numbers always lie between these two numbers. Therefore, they will also 

converge to r as n tends to infinity. That is what is very clear from the sandwich theorem. 

(Refer Slide Time: 38:18) 

 

Now, you take the limit n tends to infinity in this expression. You can see that this is equal to 

𝑓′′(𝑟)

2𝑓′(𝑟)
. Now, putting that into your expression because you are taking limit, as n tends to infinity, 

it will become like this into this term. Remember we had β here but β = – 1/α that is what I am 



putting here. And therefore, we want the constant C such that, remember you want the whole 

thing to be equal to some constant.  

 

And that constant should be such that you have C which is this one this should be equal to C 

therefore, C is equal to this term and this is nothing but this. This to the power of – 1/α. 

(Refer Slide Time: 39:28) 

 

Therefore, we want the constant C such that C equal to this term into C to the power of – 1/α. 

That will immediately give us what is C? C is given by this. This is precisely what we wanted 

to show in the statement of our theorem. Well, this is little long but very interesting and 

important for us to understand. With this, I will end this lecture. Thank you for your attention. 


