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Hi in this lecture we will study the notion of Big Oh and Small oh of a sequence and also for a 

continuous function. We will also see the definition of order of convergence which is very 

important in Numerical Analysis.  
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Well, let us start with an example consider these two sequences, sequence {𝑛} and sequence 

{𝑛2}. Both are unbounded sequences and now you can also see that both these sequences tend 

to infinity as n tends to infinity. Now, if you ask the question which of these two sequences 

will tend to infinity faster. Obviously, you can immediately tell that 𝑛2 will go to infinity faster 

than n. Let us take another example.  

 

Now we will consider two sequences {
1

𝑛
} and {

1

𝑛2
}. Now these two sequences are bounded 

sequences and both will tend to 0 as 𝑛 → ∞. Now again we will ask the question which tends 

to 0 faster? Obviously, you can see that the sequence {
1

𝑛2} goes to 0 faster than the sequence 

{
1

𝑛
}. Therefore, we have now intuitively developed the feeling that if two sequences are 

converging to some limit same limit, then one may go faster than the other. This is the basic 



idea of this Small oh and Big Oh because we are interested in measuring who goes faster to the 

limit than the other.  
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That is the question of order of convergence and it is all about comparing two sequences that 

are converging to the same limit in terms of the speed at which they converge and this is the 

basic idea of Big Oh and Small oh or little-o introduced by Edmund Landau and Paul 

Bachmann.  
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Let us see the definition of Big Oh in the context of sequences. Assume that we have two 

sequences; sequence {𝑎𝑛} and {𝑏𝑛} both are sequences of real numbers then we say that 𝑎𝑛 =

𝑂(𝑏𝑛) if there exist a constant C and the natural number N, such that |𝑎𝑛| is always less than 

or equal to constant times |𝑏𝑛| and this should happen at least for sufficiently large N that is 



what we meant by saying that there exist a natural number N such that the condition holds for 

all 𝑛 ≥ 𝑁.  

 

Now what this definition tries to say? Well, we will just put this definition in a different form 

and see what it means. We can do this if all 𝑏𝑛 at least for sufficiently large N are not equal to 

0 then you can see that 
|𝑎𝑛|

|𝑏𝑛|
≤ 𝐶 that is equivalent to saying that the sequence {

𝑎𝑛

𝑏𝑛
} is bounded. 

Let us take a simple example let 𝑎𝑛 =
1

𝑛
 and 𝑏𝑛 =

1

𝑛
.  

 

We know that both these sequences are going to 0. Therefore, you may just think that 
𝑎𝑛

𝑏𝑛
 may 

go to infinity because 𝑏𝑛 is going to 0, but that is not going to happen obviously because when 

𝑏𝑛 is going to 0 simultaneously 𝑎𝑛 is also going to 0 and at what speed both of them are going 

in the same speed. Of course, you can see it with simple calculation this is equal to 1/n divided 

by 10/n that is equal to 1/10. 

 

And that is the constant that is appearing here. In this particular case you can in fact say that 

𝑎𝑛 is equal to 10|𝑏𝑛| there is no need to put mod in this particular example and that is what this 

says. Therefore, 𝑎𝑛 in this example is a Big Oh of b n. Similarly, you can also take another 

example where 𝑎𝑛 is 𝑛2 and 𝑏𝑛 is say 
10

𝑛
 then you have  

𝑎𝑛

𝑏𝑛
= (𝑛2)/ (

10

𝑛
) that is equal to 

𝑛

10
. 

 

And in fact this is going to 0. Therefore, you can always bound it by any number say for 

instance 1 also you can take as C and say that for sufficiently large N,  
|𝑎𝑛|

|𝑏𝑛|
≤ 1. So, in this case 

also you can say that 𝑎𝑛 = 𝑂(𝑏𝑛). In fact in the second example you can say something more 

than merely what happened in the first example.  

 

In the second example 𝑎𝑛 is in fact going much faster than 𝑏𝑛 that is the basic idea of Small 

oh.  
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Let us define Small oh now. Again you have two sequences {𝑎𝑛} and {𝑏𝑛}. Now we say that 

𝑎𝑛 = 𝑜(𝑏𝑛), if for every ϵ > 0 there exist a natural number N such that |𝑎𝑛| ≤ ϵ|𝑏𝑛| for all 

𝑛 ≥ 𝑁. So, in this case what we are doing is we have a sequence 𝑎𝑛 and we are saying that you 

give me any ϵ, see that is more important you give me any ϵ, I am giving you guarantee that 

my 𝑎𝑛 the sequence will become less than that small number that you gave into 𝑏𝑛 at least for 

sufficiently large N that is what we are saying it may not happen right from the first term of 

𝑎𝑛, but you go after 10 or 15 or some sufficiently large small n then this will surely happen 

that is what we are saying and you are pretty confident about whatever ϵ that somebody gives 

you that is what the definition says you give me any ϵ, I can pack this sequence in this. 

 

But still you are saying that I can make my 𝑎𝑛 something less than or equal to ϵ times this. So, 

you will have that confidence only when that 
𝑎𝑛

𝑏𝑛
 is converging to 0 then only it can happen. So, 

that is what the definition says that your sequence 
𝑎𝑛

𝑏𝑛
  is intuitively if you see it is converging 

to 0 that is what in a particular case when all this 𝑏𝑛’s are not equal to 0 at least for sufficiently 

large N.  

 

This is equivalent to saying that 
𝑎𝑛

𝑏𝑛
  is in fact converging to 0. If you recall in the last slide we 

have taken an example where 𝑎𝑛 =
1

𝑛2 and 𝑏𝑛 =
10

𝑛
. You can see that 𝑎𝑛 is going to 0 much 

faster than 𝑏𝑛. So, if you take 
𝑎𝑛

𝑏𝑛
  you will see that it is 

1

10𝑛
. Now you give me any ϵ > 0, I can 

always find a sufficiently large N such that this is less than or equal to ϵ for all 𝑛 ≥ 𝑁.  

 



Therefore, in this case 𝑎𝑛 = 𝑜(𝑏𝑛). So, the notation Small oh means 𝑎𝑛 has to surely go faster 

to the limit than 𝑏𝑛 then only you will say that 𝑎𝑛 = 𝑜(𝑏𝑛) whereas in Big Oh either 𝑎𝑛 should 

go faster or equally as fast as 𝑏𝑛 then also you can say that 𝑎𝑛 = 𝑂(𝑏𝑛) that is a subtle 

difference between Big Oh and Small oh.  
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So this is what we will remark, you have two sequences 𝑎𝑛 and 𝑏𝑛. You can see that 𝑎𝑛 =

𝑜(𝑏𝑛) means what 𝑎𝑛 is definitely going faster than 𝑏𝑛 that also means 𝑎𝑛 is going as fast as 

𝑏𝑛 because going faster than 𝑏𝑛 is something more than that, therefore, 𝑎𝑛 is also big Oh of 𝑏𝑛. 

So, if 𝑎𝑛 goes faster than 𝑏𝑛 then it is also 𝑎_𝑛 = 𝑂(𝑏𝑛) because we are demanding more 

stronger conditions here than this that is why if this happens this will surely happen, but the 

converse is not true.  

 

You can take many examples the first example that we have given in the previous slide is also 

an example where 𝑎𝑛 = 𝑂(𝑏𝑛) because 𝑎𝑛 and 𝑏𝑛 are going at equal speed that is if you recall 

we have taken 𝑎𝑛 =
1

𝑛
 and 𝑏𝑛 =

10

𝑛
. Remember, in this case 𝑏𝑛 is always staying ahead of 𝑎𝑛. 

So, it is not the position that matters it is the speed at which they tend to 0 matters.  

 

You can see that 
𝑎𝑛

𝑏𝑛
=

1

10
  and that is a fixed number. Therefore, this cannot go to 0. Therefore, 

in this example 𝑎𝑛 = 𝑂(𝑏𝑛), but definitely 𝑎𝑛 ≠ 𝑜(𝑏𝑛). The same idea is also given in this 

example. We are taking 𝑎𝑛 = 𝑛 and 𝑏𝑛 = 2𝑛 + 3. Now, let me summarize what we will learn 

from Big Oh and Small oh notation. We have two sequences in particular let us take both the 

sequences are converging to 0. 



 

Then 𝑎𝑛 = 𝑂(𝑏𝑛) means the sequence 𝑎𝑛 → 0 at least as fast as the sequence 𝑏𝑛 that is what 

is meant by Big Oh and small oh means that 𝑎𝑛 → 0  definitely faster than the sequence 𝑏𝑛 this 

is Small oh. So, I hope you have understood the notation of Big Oh and Small oh and the subtle 

difference between them. Once you understand this you can also extend this idea to continuous 

functions also.  
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Let us give this two definitions in terms of functions. Consider a point 𝑥0 ∈ 𝑅 and f and g are 

continuous functions defined in a small neighborhood of 𝑥0 then we say that f is Big Oh of g 

as 𝑥 → 𝑥0 this is very important all this oh notations are defined as x tends to something. 

Therefore, you should always write this where this x tending to in order to compare one 

function with the other function.  

 

Notationally we will write 𝑓(𝑥) = 𝑂(𝑔(𝑥)) as 𝑥 → 𝑥0 that also one should write. The 

definition is almost similar as we did with the sequences when can we say this that when there 

exist a constant and a real number δ such that |𝑓(𝑥)| ≤ 𝐶|𝑔(𝑥)| whenever |𝑥 − 𝑥0| ≤  δ . What 

it means, I do not want this condition to happen everywhere on the real line, in a small 

neighborhood of 𝑥0 if it happens that is enough  because we are only worried about 𝑥 → 𝑥0.  

 

Therefore, as you go closer and closer to 𝑥0 this should happen If that is the case then we say 

that 𝑓(𝑥) = 𝑂(𝑔(𝑥)).  
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Let us similarly define the notion of Small oh again. Let x be some real number and f and g are 

continuous functions defined in a small neighborhood of 𝑥0 then we say that f is Small oh of g 

as 𝑥 → 𝑥0. Notationally we write as 𝑓(𝑥) = 𝑜(𝑔(𝑥)). When this happens, if for every ϵ > 0 

there exist a real number δ > 0 such that |𝑓(𝑥)| ≤ ϵ|𝑔(𝑥)| whenever |𝑥 − 𝑥0| ≤ δ. 

 

Again, this condition should happen in a small neighborhood of 𝑥0 that is what is important 

here and again you can see that the role of this ϵ which says that 
𝑓(𝑥)

𝑔(𝑥)
 should tend to 0 as 𝑥 →

𝑥0 and that is provided if 𝑔(𝑥) ≠ 0 otherwise that is what this inequality means. 
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Again the same kind of remark that we made with sequence will hold here. We have two 

functions f and g which are continuous functions defined in a small neighborhood of 𝑥0 then 



you can see from the definitions of Big Oh and Small oh that 𝑓(𝑥) = 𝑜(𝑔(𝑥)) will always 

imply that 𝑓(𝑥) = 𝑂(𝑔(𝑥)), but again the converse is not true. You can take examples in a 

similar way as we did with the sequences.  

 

So, I leave it to you to think about various examples for why the converse is not true. Again let 

us summarize, suppose you have two functions f and g and we know that 𝑓(𝑥) → 0 and also 

𝑔(𝑥) → 0 as x tends to some point say a then we say that 𝑓(𝑥) = 𝑂(𝑔(𝑥)) means 𝑓(𝑥) → 0  at 

least as fast as 𝑔(𝑥) → 0  as  𝑥 → 𝑎  that is what is meant by Big Oh and what is meant by 

Small oh? 

 

Small oh means f should go to 0 definitely faster than 𝑔(𝑥) going to 0 as x tends to some point 

say a or 𝑥0 in the previous definition we have taken. These notations are very important in 

numerical analysis and why in particular we are more interested in taking whether a sequence 

or a function tending to 0 because we will be studying errors for various methods.  

 

And we wish our errors to go to 0. Now, our interest is to see how fast this error goes to 0 as 

some parameter tends to something. This is what we will be interested in the subject and 

therefore this notations will come quite often and it is very convenient for us to use this 

notations than every time telling what they actually do.  
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Let us take an example. Well this example is familiar because we have discussed in our 

previous lecture. Let us take the function 𝑓(𝑥) = 𝑐𝑜𝑠(𝑥) and let us try to write the Taylor 



formula for cos x around the point 𝑎 = 0. If you recall this is given by the Taylor polynomial 

given by this plus the remainder term given like this. Now, if I want to use the Taylor 

polynomial instead of cos x then what is the error that I am committing in that representation. 

Well, that is precisely this remainder term or the truncation error.  

 

This is what we have seen in the last class. Unfortunately, this is unknown expression because 

of this quantity ξ which generally we do not know, but we only know that ξ lies between x and 

0. So, that makes this expression to be unknown. Now our interest is to understand how fast 

does this error goes to 0 for that let us just define this remainder term or the truncation error as 

a function of x.  

 

Let us call this as 𝑅(𝑥) and sorry this maybe ξ here so 𝑅(𝑥) is a function of x in fact this ξ also 

depends on x as x changes the ξ will also change. Therefore, it is really a complicated function.  
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Now our question is as x tends to 0 what will happen to 𝑅(𝑥). Well, it is very clear that as x 

tends to 0, 𝑅(𝑥) will also go to 0. Why? Because although this term cos ξ is unknown, but 

definitely we know that it is bounded. Therefore, this quantity is some bounded quantity it 

means it remains constant and this term is going to 0. The first one is bounded and the second 

this one is going to 0.  

 

Therefore, the entire thing will go to 0 as 𝑥 → 0 that is quite clear. Now, our interest is to see 

how fast it goes to 0. Well, that is not a very difficult question because we can understand how 

this term goes to 0. So, you can immediately say that 𝑅(𝑥) → 0 as fast as 𝑥2(𝑛+1) → 0 as 𝑥 →



0. So that is what we meant by saying that 𝑅(𝑥) this is the function just you compare this with 

the definition.  

 

We had two functions f and g and we say that 𝑓(𝑥) = 𝑂(𝑔(𝑥)). The same instead of f here I 

have R and R is Big Oh of what this function. So, just take this as 𝑔(𝑥). So, 𝑅(𝑥) = 𝑂(𝑋2(𝑛+1)) 

as 𝑥 → 0. This is something like you are comparing your error with something which you know 

very well how it behaves. See this you know how it behaves intuitively you can imagine how 

fast it goes to 0. Now what you are saying is my truncation error in Taylor series is going as 

fast as this function goes to 0 as x tends to 0.  

 

Often we say that the function R of is of order 2(n+1). This kind of words are quite often used 

in numerical analysis to say how our error goes to 0, how fast the error goes to 0. Suppose, you 

say that my error is going to 0 with order say 5 it means your error is Big Oh of 𝑥5 or similarly 

you can interpret in terms of the Small oh also.  

(Refer Slide Time: 25:00) 

 

Finally, we will quickly define the notion of order of convergence you have a sequence {𝑎𝑛} 

and you know that the {𝑎𝑛} is converging to some limit say a then we say that the order of 

convergence. Again you can see that the order of convergence is something to understand how 

fast this sequence is going to a. So, we say that the sequence going to a with order of 

convergence at least linear, if we can find a constant 𝑐 < 1 and the natural number N such that 

|𝑎𝑛+1 − 𝑎| ≤ 𝑐|𝑎𝑛 − 1| for sufficiently large n that is 𝑛 ≥ 𝑁 that you form. So, this is what is 

called at least linearly. So, it means the sequence is converging at least of order 1 that is what 



it means. Similarly, you can also say that the order of convergence of this sequence is at least 

super linear if there exist ϵ that converges to 0. 

 

And the natural number n such that |𝑎𝑛+1 − 𝑎| ≤ ϵ𝑛|𝑎𝑛 − 𝑎| for all 𝑛 ≥ 𝑁 that is for 

sufficiently large N onwards this condition should hold.  
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Similarly, you can define for at least quadratic convergence and this can further by generalized 

to any 𝛼. We say that the order of convergence of this sequence is at least 𝛼 that is very 

important it is converging at least up to this speed that is what it means. If you can find a 

constant C and a natural number n such that this condition holds. You see this |𝑎𝑛+1 − 𝑎| ≤

𝐶|𝑎𝑛 − 𝑎|α for all 𝑛 ≥ 𝑁.  

 

Often we will also use the notation 𝑙𝑖𝑚𝑛→∞
|𝑎𝑛+1−𝑎|

|𝑎𝑛−𝑎|
 and that is may be some constant say λ 

because if this is happening of course to the power of α so this is also one equivalent definition 

for this. In this case often in some books people call this as rate of convergence. In some books 

even order of convergence is otherwise called as rate of convergence.  

 

Therefore there is no standard usage of these words. We will come across such expressions in 

non linear equations and with this I thank you for your attention.  


