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Nonlinear Equations: Bisection Method 

 

In the last lecture, we had an overview of what we are going to do in the current chapter on 

nonlinear equations In today's class, we will introduce our first method for approximating an 

isolated root of a nonlinear equation. The method is called the bisection method and this 

method is a bracketing method. 

(Refer Slide Time: 00:43) 

 

(Refer Slide Time: 00:47) 

 



 

Let us explain the bisection method, suppose we have a function 𝑓(𝑥) and we are interested in 

finding an isolated root of the function 𝑓(𝑥) = 0. Suppose the graph of the function f is given 

like this. Then we are interested in capturing the root or for the equation 𝑓(𝑥) = 0. We have to 

first locate this root in an interval, say [𝑎0, 𝑏0]. How we can do? Well, you have to see if 

𝑓(𝑎0) < 0 and 𝑓(𝑏0) > 0. 

 

Recall that we always assume the function f to be a 𝐶1 function in particular, it is also a 

continuous function. Therefore, if you have 𝑓(𝑎) < 0 and 𝑓(𝑏) > 0 then by intermediate value 

theorem, you can say that there exists a point say r such that 𝑓(𝑟) = 0, that is the idea. In fact, 

you can also equivalently look for 𝑎0 and 𝑏0 such that 𝑓(𝑎0) > 0 and 𝑓(𝑏0) < 0.  

 

Any of these two conditions is enough for us to say that there exists a point r in the interval 

[𝑎0, 𝑏0] such that 𝑓(𝑟) = 0. These two conditions in fact, can be checked equivalently by 

looking for an 𝑎0 and 𝑏0 such that 𝑓(𝑎0)𝑓(𝑏0) < 0. Therefore, we will impose two conditions 

on f and its domain [𝑎0, 𝑏0]. 

 

That is, f is a continuous function defined on the interval [𝑎0, 𝑏0] such that 𝑓(𝑎0)𝑓(𝑏0) < 0. 

So, this is the main disadvantage of the bisection method, as we discussed in the last class that 

you have to give this interval [𝑎0, 𝑏0] as an input to the method. How will you find this [𝑎0, 𝑏0]? 

Well, there is no general way or general algorithm to find this 𝑎0 and 𝑏0. 

 



One has to do it by trial and error either manually or even if you want to do it on a computer, 

it has to be done with some trial and error only that is the main disadvantage of any bracketing 

method. By bracketing method, we mean to say that you have to locate a root in an interval and 

that interval has to be given as an input to your method. Therefore, bisection method is a 

bracketing method. Now, once you give 𝑎0, 𝑏0 as an input and also the function f as an input. 
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Then the iterative procedure has to be now set up. How are we going to set up? Let us see. So, 

we have already located the root r in the interval [𝑎0, 𝑏0]. Now, what we have to do is? We 

have to find 𝑥1 which is the first term of our iterative sequence. How will you find 𝑥1? 𝑥1 is 

taken as the midpoint of the interval [𝑎0, 𝑏0]. And that is given by 𝑥1 =
𝑎0+𝑏0

2
.  

 

And now, once you have this then you take the value 𝑓(𝑥1) and then see in which part of these 

two intervals does the sign change happens. Either, it is happening between [𝑎0, 𝑥1] or [𝑥1, 𝑏0]. 

That is the next step. So, in that way you may have one of the following situations that is your 

𝑓(𝑥1) itself may be 0, in which case 𝑥1 itself is a root of your equation and your job is done. 

Therefore, you can stop your iteration. 

 

Suppose it did not happen, that is 𝑓(𝑥1) is not equal to 0 then you look for whether 

𝑓(𝑎0)𝑓(𝑥1) < 0 or 𝑓(𝑥1)𝑓(𝑏0) < 0. If this happens then you take 𝑎0 to 𝑥1 as your new 

interval. If not, then you take the other piece as the new interval. Let us see how it works? You 

initially have 𝑎0 and 𝑏0, suppose this is the graph of your equation and the function 𝑓(𝑥) is 

given like this. 



 

And we are interested in capturing the root r which is lying in the interval [𝑎0, 𝑏0]. In the first 

iteration you will take 𝑥1 as the midpoint of [𝑎0, 𝑏0]. And you will check the sign change of 

the function in the interval [𝑎0, 𝑥1] that is this condition you will check. If that is satisfied then 

you will take the first condition and declare a naught 𝑥1 as the interval for your second iteration. 

 

Otherwise, you will check for whether the sign change happens in the second part of the interval 

that is from [𝑥1, 𝑏0]. That is, you will check this condition if that happens then you will take 

the second interval, as the interval for your next iteration. You can note that either this or this 

only will happen. You will never get a situation where both happens or you will never get a 

situation where none of these two happens. 

 

You can think why it is like that? I leave it to you to do that. Once you have the interval say in 

this particular example your interval for the next iteration will be 𝑎1 which is equal to 𝑥1 and 

𝑏1 which is equal to 𝑏0. For the next iteration again, you will go to find the midpoint of [𝑎1, 𝑏1] 

and call it as 𝑥2. That is what, in general, we are writing like this. For any n you already got 𝑎𝑛 

and 𝑏𝑛. 

 

Now, for the next iteration, you will find 𝑥𝑛+1 as the midpoint of the interval, [𝑎𝑛, 𝑏𝑛]. And 

once you do that you will see where the sign change happens. That is now you have broken the 

interval into two parts. One is [𝑎𝑛, 𝑥𝑛+1] and another one is [𝑥𝑛+1, 𝑏𝑛]. Now, you will check 

where the sign change happens and once you find that interval in which sign change happens, 

you will discard the other interval and take only that interval which has the sign change.  

 

And then you will go for the next iteration, where you will find the midpoint of the interval 

that is obtained in the previous iteration. And then again you will see the sign change in this 

example, the sign change is again not happening in this interval. The sign change is happening 

in this second part of the interval. 

 

Therefore, 𝑎2 is taken as 𝑥2 and 𝑏2 is taken as 𝑏1. Now again, you will go to find the midpoint 

of the interval [𝑎2, 𝑏2] and suppose that happens to be this one that is called as 𝑥3. And now 

you will again find the sign change this time sign change happens in the first part of the interval. 



Therefore, 𝑎3 is taken as 𝑎2 and 𝑏3 is taken as 𝑥3 and you discord this part of the interval. And 

you have only this interval in your next iteration and the iteration goes on like this. 
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Now, the next step is to check whether you have to stop the iteration at any nth iteration or not. 

You can clearly see that at every iteration the length of the interval is reducing. Therefore, there 

is a very natural criteria for us to stop the iteration, what you do is, you check the length of the 

interval. If the length of the interval is less than some pre-assigned positive quantity which is 

called the tolerance parameter. 

 

That is, you take some ϵ say 10−2 or 10−3 or whatever it is. And then check for the length of 

the interval. Once you finish the iteration at the nth stage then you have the interval [𝑎𝑛, 𝑏𝑛], 

you look for this number. If this number is less than ϵ then surely the difference between 𝑥𝑛+1 

which is the midpoint of the interval [𝑎𝑛, 𝑏𝑛] minus the root r that will be surely less than ϵ.  

 

Therefore, you can always check for this condition. That is a good and natural stopping criteria 

in the bisection method. This is because in bisection method, the length of the interval at every 

iteration is reducing. That is why we can impose this condition as the stopping criteria. 

Therefore, if 𝑏𝑛+1 − 𝑎𝑛+1 is sufficiently small then take the midpoint of the interval 

[𝑎𝑛+1, 𝑏𝑛+1] and declare that as the required approximate root. 

 

So that is the stopping criteria that we are imposing. If that is not happening again, go to the 

step one and continue this process till either 𝑓(𝑥𝑛+1) becomes 0, remember on a computer this 



may not happen at all. Therefore, you may have to stop your iteration only with this stopping 

criterion. 

(Refer Slide Time: 13:28) 

 

Now, assuming that at every iteration 𝑥𝑛 is not coinciding exactly with a root, at least as a 

computation on a computer this may not happen because of the rounding errors. In that way, 

generally, we will land up generating a sequence of real numbers. Now the question is, will 

this sequence converge to a root of the nonlinear equation, 𝑓(𝑥) = 0? That is the question. So, 

to answer this question, we have to go for the convergence analysis on the sequence generated 

by the bisection method. 
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Let us state this result in the form of a theorem. Let f be a continuous function defined on an 

interval [𝑎0, 𝑏0], where 𝑎0 and 𝑏0 are chosen in such a way that 𝑓(𝑎0) and 𝑓(𝑏0) have opposite 



signs. We now know why we are imposing this condition because by this we can ensure that 

there is at least one root in between the points, 𝑎0 and 𝑏0 because f is a continuous function. 

 

The conclusion is that, there exists r in the interval [𝑎0, 𝑏0] such that 𝑓(𝑟) = 0. And this is 

direct consequence of the intermediate value theorem. Because f is continuous and 𝑓(𝑎) and 

𝑓(𝑏) are of opposite sign. Therefore, this is directly proved from the intermediate value 

theorem. And further the iterative sequence of the bisection method will always converge to r. 

 

This is what in the previous lecture, we told that the bracketed methods, once you obtain an 

interval [𝑎0, 𝑏0], then the sequence generated by this bracketing methods will always converge. 

So that is what we listed as an advantage of bracketing methods. Here you can see that the 

sequence 𝑥𝑛 will always converge that is what the conclusion says and in fact you also have an 

error estimate here. 

 

You can see that |𝑥𝑛+1 − 𝑟| ≤ (
1

2
)
𝑛+1

(𝑏0 − 𝑎0) and this will happen for each n = 0, 1, 2 and 

so on. Now, how to prove this theorem? Well, you can clearly see that once you prove this 

estimate then the convergence comes very easily. Why? Because by taking n tends to infinity, 

you can see that (
1

2
)
𝑛

 goes to 0 and this is a fixed number. 

 

Therefore, the right-hand side goes to 0, as n tends to infinity. And that shows that of course, 

by the sandwich theorem that the left-hand side will also goes to 0, as n tends to infinity. 

Therefore, we have to only prove this inequality and that will in fact prove the first part of the 

theorem. 
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Let us see, how to prove this inequality? It is not very difficult. You just take the length of the 

interval [𝑎𝑛, 𝑏𝑛]. You can see that at every iteration you have [𝑎𝑛, 𝑏𝑛] and you are bisecting 

this interval. That is, you are defining 𝑥𝑛+1 as the midpoint of the interval [𝑎𝑛, 𝑏𝑛]. And that is 

how you are obtaining the next interval. That is, you are either choosing this as your next 

interval or you are choosing this interval as the interval for your next iteration. 

 

Therefore, the length 𝑎𝑛, 𝑏𝑛 similarly, would have come from your previous iteration, 

𝑎𝑛−1, 𝑏𝑛−1 by cutting that interval into half. That is how you would have got your 𝑥𝑛 and 

depending on where the sign change happens. You would have picked one piece of the interval 

𝑎𝑛−1, 𝑏𝑛−1 and named it as 𝑎𝑛, 𝑏𝑛. Therefore, 𝑏𝑛 − 𝑎𝑛 should be half of 𝑏𝑛−1 − 𝑎𝑛−1 that is 

this interval length will be half of the length of this interval. 

 

Similarly, the length of this interval will be half of the length of this interval and it goes like 

that. That is why we are writing (𝑏𝑛 − 𝑎𝑛) =
1

2
(𝑏𝑛−1 − 𝑎𝑛−1) and that will be actually, half of 

this is nothing but half of (𝑏𝑛−2 − 𝑎𝑛−2) that is nothing but (
1

2
)
2
(𝑏𝑛−2 − 𝑎𝑛−2). And that again 

you can apply this idea to get (
1

2
)
3
(𝑏𝑛−3 − 𝑎𝑛−3) and you can keep on going like this. 

 

This kind of idea is always used in our discussions. You once find an expression and then you 

can recursively apply that expression. And once you do that where will you reach? You will 

reach at (𝑏0 − 𝑎0) and that will have (
1

2
)
𝑛

. So that is the idea. Let us see how it goes? 
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Now, take the limit on both sides. You can see that 𝑙𝑖𝑚
𝑛→∞

(𝑏𝑛 − 𝑎𝑛) is nothing but 

𝑙𝑖𝑚
𝑛→∞

(
1

2
)
𝑛
(𝑏0 − 𝑎0). As I told this expression goes to 0, as n tends to infinity. So, therefore, 

𝑙𝑖𝑚
𝑛→∞

(𝑏𝑛 − 𝑎𝑛) = 0. That implies that 𝑙𝑖𝑚
𝑛→∞

𝑎𝑛 = 𝑙𝑖𝑚
𝑛→∞

𝑏𝑛. Remember, we have always chosen 

𝑥𝑛+1 as the midpoint of the interval (𝑎𝑛, 𝑏𝑛).  

 

This is how we have chosen 𝑥𝑛+1. And now we will see that the left-hand side goes to some 

limit, say r as n tends to infinity. Similarly, the right-hand side limit also goes to r as n tends 

to infinity. Why they go to the same limit? Because of this fact. Now, you apply the sandwich 

theorem and we get that the 𝑙𝑖𝑚
𝑛→∞

𝑎𝑛 = 𝑙𝑖𝑚
𝑛→∞

𝑏𝑛, this we have already shown. 

 

And now, this path comes from the sandwich theorem which says that 𝑙𝑖𝑚
𝑛→∞

𝑥𝑛 will also exists 

and that will be equal to the limit to which these two sequences are converged that is r. Now, 

what we have to prove that this r is the root of the equation. That is what we have to prove. 
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Recall that f is a continuous function this is one of the hypotheses that we have taken in our 

theorem and also at every iteration we are checking this condition. Therefore, for every n, 

𝑓(𝑎𝑛)𝑓(𝑏𝑛) < 0. This is how we have built the algorithm. This is coming from our basic 

assumption and this is coming from the way we have built the algorithm. Therefore, as you 

take the limit, you can see that  𝑓(𝑎𝑛) will converge to 𝑓(𝑟), why? 

 

Because f is a continuous function similarly, 𝑓(𝑏𝑛) will also converge to 𝑓(𝑟) as n tends to 

infinity. If the product 𝑓(𝑎𝑛)𝑓(𝑏𝑛) < 0 then the product 𝑓(𝑟)𝑓(𝑟) will also be less than or 

equal to 0 that is what we are writing here. Now, what is this? This is nothing but (𝑓(𝑟))
2
≤ 0. 

Remember, f is a real valued function. Therefore, 𝑓(𝑟) is a real number and its square should 

always be non-negative. 

 

So that shows that 𝑓(𝑟) should be 0. So, what we proved is that? The limit to which 𝑥𝑛 

converges which we named as r is a root of the equation 𝑓(𝑥) = 0, that is what we have proved.  
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Now, what all we have obtained? We obtained an interval [𝑎𝑛, 𝑏𝑛] at every iteration. And we 

made sure that at least one root of our equation lies in the interval. And once you get 𝑎𝑛, 𝑏𝑛 

then you go to find the midpoint of that interval and that is taken as the iteration term of the 

sequence at the (𝑛 + 1)th stage. So, this is how the iteration went. Therefore, at every stage 

[𝑎𝑛, 𝑏𝑛] you see you have at least one root lying in this. 

 

And then you went to find the midpoint of this interval 𝑥𝑛+1. Therefore, the distance between 

𝑥𝑛+1 and r that is 𝑥𝑛+1 − 𝑟 is surely less than or equal to half of this interval’s length. Because 

of the interval's length is this and you always make sure that r lies in [𝑎𝑛, 𝑏𝑛]. Therefore, r is 

somewhere in this interval either it may be this side or that side wherever it is once you bisect 

[𝑎𝑛, 𝑏𝑛]. 

 

Then the distance between that point that is, the midpoint and the root r will be less than half 

times the length of the interval [𝑎𝑛, 𝑏𝑛]. So that is what I am writing here. The distance between 

|𝑥𝑛+1 − 𝑟| ≤
1

2
(𝑏𝑛 − 𝑎𝑛). Now, once you have this now you go on applying this recursively 

just like what we did in the previous slide? And you can obtain that |𝑥𝑛+1 − 𝑟| ≤

(
1

2
)
𝑛
(𝑏0 − 𝑎0). 

 

This is precisely what we wanted to prove? As the error estimate for our bisection method 

sequence. So, here and this is proved now and that completes the proof of this theorem. In fact, 

there is another result, very interesting result, which says that we can obtain n, the number of 

iterations that are needed for us to compute in order to get our approximation close to the root 



up to the required accuracy that n can be obtained from this error estimate itself. This is a very 

interesting result and we will discuss this result in the next class. Thank you for your attention. 

 

 


