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Hi, we are studying numerical methods for computing eigenvalues and eigenvectors of a given 

matrix. In this we have introduced power method in the last class and also we learned 

convergence theorem for power method. In this class we will study a small variant of power 

method called inverse power method. 
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Let us first recall a result from linear algebra which states that if λ is an eigenvalue of an 

invertible matrix A then λ−1 is an eigenvalue of 𝐴−1. This is not very difficult for us to see; you 

just take λ as the eigenvalue of a matrix A. Then you can write  𝐴 𝒗 =  λ 𝒗, where v is an 

eigenvector corresponding to the eigenvalue λ. Since A is invertible, you can write 𝒗 = λA−1𝒗. 

 

That implies 𝐴−1𝒗 =
𝟏

λ
𝒗, here you can note that there is no change in the eigenvector; only the 

eigenvalue becomes the reciprocal of the eigenvalue of the matrix A. So, that is very important 

for us to note. 
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Using this theorem, we can in fact compute the smallest eigenvalue of a matrix A. When I say 

smallest eigenvalue it should be smallest in the absolute value. Say for instance, suppose we 

have a matrix A whose eigenvalues are rearranged such that |λ1| ≥ |λ2| ≥ ⋯ ≥ |λn−1| > |λn|. 

 

Now you can see that if A has such eigenvalues then λn which is the smallest eigenvalue is 

unique. That is the only eigenvalue which is smallest in this sense. Now let us see how to 

compute this eigenvalue λn using power method. For that what we will do is instead of applying 

power method to A which will capture the dominant eigenvalue. Now we will apply the power 

method to 𝐴−1. 

 

Why we do that? We have seen from the above theorem that if λn is the smallest eigenvalue of 

A then 
1

λn
 will be the dominant eigenvalue of 𝐴−1. That makes us to apply power method on 

𝐴−1 in order to compute 
1

λn
 and therefore we can obtain this smallest eigenvalue of A. That is 

the idea. 
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Remember, once we compute 
1

λn
 the power method applied on 𝐴−1 will also capture and 

eigenvector corresponding to 
1

λn
. That is the same as the eigenvector corresponding to λn also. 

So, in that way we can obtain the smallest eigenvalue of A and a corresponding eigenvector of 

the eigenvalue λn. So, that is the interesting part of power method. And this way of computing 

the smallest eigenvalue of a matrix is what we call as the inverse power method. 

(Refer Slide Time: 04:36) 

 

Now, let us give the iterative procedure for inverse power method, you can see that there is 

nothing much difference in inverse power method when compared to power method. The only 

difference is instead of applying the power method to the matrix A now we will be applying it 

to 𝐴−1. That is for every iteration we will compute 𝒚(𝑘+1) = 𝐴−1𝒙(𝑘). Remember, in power 

method we will define 𝒚(𝑘+1) = 𝐴𝒙(𝑘). 



 

But here we will apply 𝐴−1 to get 𝒚(𝑘+1). This is not something which is straight forward for 

us because we are given the matrix A. Now in order to compute 𝒚(𝑘+1) we need to invert the 

matrix A which may be computationally costly. So, what we can do is you can write this 

equation as 𝐴 𝒚(𝑘+1) = 𝒙(𝑘). Here you can observe that once you choose 𝒙(𝟎) you will plug in 

𝒙(0) on the right hand side which is a known vector. 

 

And you will then solve this linear system to obtain the unknown 𝒚(𝑘+1). That is a major 

difference in inverse power method when compared to the power method. This complicated 

step is not there in power method because 𝒚(𝑘+1) is just defined as 𝐴𝒙(𝑘), 𝒙(𝑘) is known to us 

and A is also given to us. Therefore, 𝒚(𝑘+1) can be explicitly computed from there, whereas in 

inverse power method 𝒚(𝑘+1) has to be computed by solving this linear system. 

 

That is, we have to solve this linear system 𝒚(1), once you have this then you will have 𝒙(1) 

and that has to be then taken as the right hand side to get  𝒚(2) and so on. So, if you see here 

the right hand side vectors will only change, whereas the coefficient matrix A will remain 

unchanged. 
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Therefore, what you can do is you go for a LU-factorization because once you do the LU-

factorization 𝐴 = 𝐿𝑈 then the system 𝐴𝐲 =  𝒙 can be solved by first doing a forward 

substitution 𝐿𝒛 = 𝒙 and that gives you z. Then we can plug in that into 𝑈𝒚 = 𝒛. So, you bring 



that to the right hand side and that gives us the required vector y. We have learned it in one of 

our previous classes where we have discussed LU-factorization; you just recall that. 

 

So, the advantage of going for LU-factorization is that once you make the factorization L into 

U for the matrix A then at every iteration you just have to plug in the right hand side vector and 

do one forward substitution and one backward substitution you will get your y. That will be 

computationally relatively cheaper. So, once you get this  𝒚(𝑘+1) rest of the algorithm remains 

the same as we did in the power method. 
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What you have to do? You take this vector y and find the maximum norm of that and in 

whichever index the maximum norm is achieved you take that value of the y coordinate and 

define that as μ𝑘+1. For instance, if 𝒚(𝑘+1) is equal to say (-2, 3, -5) then your J which is nothing 

but the minimum of all the J’s at which the maximum norm is achieved. So, here it is achieved 

only at the third coordinate. Therefore, μ𝑘+1 will be 𝒚3
(𝑘+1)

. In this particular example it is -5. 

 

So, this is just an example. So, in that way only you have to choose μ𝑘+1. Once you have μ𝑘+1, 

you can find the 𝒙(𝑘+1)very easily by taking  𝒚(𝑘+1) and divided by μ𝑘+1 which will be a unit 

vector. So, we have seen all this when we were discussing power method and this is the iterative 

procedure for the inverse power method. The only difference and the complication is, in 

computing 𝒚(𝑘+1). Otherwise, all these steps remain the same as in the power method. 
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The next question is, if these sequences that is sequence μ𝑘 and sequence 𝒙(𝑘); if both these 

sequences converge then where do they converge? That is the question. In a sense we have 

already answered this question, but we will make it more precise. Of course, we have to keep 

in mind that the initial guess 𝒙(0) should be chosen in such a way that 𝑐1 ≠ 0. What is 𝑐1? 𝑐1 

is nothing but the coefficient in the representation of 𝒙(0) in terms of the eigenvectors. 

 

𝑐1 𝒗1
+ 𝒄𝟐𝒗2 + ⋯ + 𝑐𝑛𝒗𝑛. In that the coefficient 𝑐1 should be non zero that is for the theoretical 

reason, but assume that everything went well with our choice of 𝒙(0). Then our question is, 

where these two sequences will converge? The sequence μ𝑘 will converge to the dominant 

eigenvalue of 𝐴−1 which is nothing but the reciprocal of the smallest eigenvalue of A. 

 

In our rearranged form it is λ𝑛; therefore μ𝑘 will converge to 
1

λ𝑛
. Then where does the sequence 

𝒙(𝑘) converge? 𝒙(𝑘) will converge to an eigenvector of λ𝑛. Remember it will converge to an 

eigenvector of 
1

λ𝑛
 which is of course the same as the eigenvector of λ𝑛 also. 

(Refer Slide Time: 12:00) 



 

Let us see an example. Let us take the matrix A given like this, I am just giving you only 4 

digits after the decimal place. As I told you, we prefer to first decompose the matrix A into L 

into U. I have just taken the Doolittle factorization you can just observe it here all the diagonal 

elements are 1. So, I have just taken the Doolittle factorization for A. So, once you have L and 

U then 𝐴𝒚 = 𝒙 can be done with a forward substitution and one backward substitution. 
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And at each iteration you can get the vector y. Once you get the vector y then you will look for 

that coordinate of y at which the maximum norm is achieved. If it is achieved at multiple 

coordinates then you will take the one which is with the minimum coordinate. So, in that sense 

the maximum norm is achieved at the first coordinate of 𝒚(1) and therefore μ1 is given by -

2.14. 

 



Remember it should be minus not plus, and once you get that then simply take 𝒙(1) =
𝒚(1)

𝜇1
. So, 

that is your 𝒙(1) and that is given by this and once you have 𝒙(1) again you plug in 𝒙(1) into 

𝐿 𝑈 𝒚(1)  =  𝒙(1). A forward substitution and a backward substitution will give you 𝒚(2), so 

you will get 𝒚(2). From 𝒚(2) again you will find the coordinate at which the maximum norm is 

achieved that is μ2. 

 

And then you divide 𝒚(2) by μ2 you will get  𝒙(2). Now you repeat this process, I am just going 

ahead with the iteration; you can observe that μ is converging slowly to the number 1.63. 

Remember if μ is converging to 1.63 it means what it is actually converging to 
1

λ3
. What is λ3? 

We have not given what are all the eigenvalues of A; therefore we do not know that is the 

smallest eigenvalue of A. 

 

When I say smallest, it is the smallest value of all the eigenvalues in the absolute sense. 

Therefore, this is for us given as 1.63, when you take the reciprocal of that that gives you 0.61 

and what is the corresponding eigenvector? For eigenvector you do not need to do anything, 

just comes as it is the eigenvector is taken as -0.81 and 0.03. So, this is the smallest eigenvalue 

of the matrix A. 

 

And the corresponding eigenvector of this eigenvalue is given like this and this is how the 

inverse power method will go on. For this we have chosen the initial guess as 𝒙(0) = (1, 1, 1), 

I am sorry I forgot to mention this. 
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The next question is, we learned how to capture the dominant eigenvalue of a matrix and the 

smallest eigenvalue of a matrix. Now is there a way to find some of the other eigenvalues of A 

also? That is the question. This can be done by shifting the matrix A appropriately and that 

results into shifted inverse power method. Let us try to understand what is shifted inverse power 

method? 

 

Assume that we are interested in capturing an eigenvalue λ𝑗 and one of its corresponding 

eigenvectors say 𝒗𝑗  . Now what you do is you choose some real number ν such that |λ𝑗 − ν| <

|λ𝑖 − ν|, 𝑖 = 1,2, ⋯ , 𝑛, 𝑖 ≠ 𝑗. It means you try to find a nu such that when you take this quantity 

that will be the smallest value of all such quantities when applied to all other eigenvalues of 

the matrix A. 

 

Practically, this is not possible to get because simply we do not know what is λ𝑗. However, in 

certain situations we may use Gerschgorin’s disk to get an estimate of ν. For instance, suppose 

your matrix A is such that the Gerschgorin’s disk are something like this disk 1, disk 2 and so 

on disk 3 and then disk 4 like that, disk 5 like that and then in between you have a small disc 

which is disjoint from here. 

 

And you want to find this eigenvalue; let us call this as our λ𝑗. In such cases you know how to 

choose your ν. Say you take this interval and suppose this interval is very small then you have 

an idea of how to choose this ν. So, like this in certain restricted situations you may be able to 



choose such ν′s using Gerschgorin’s theorem. If such a favourable situation is not happening 

with the matrix A then you can also try with 𝐴𝑇. 

 

Sometimes that may give you a better information about how the eigenvalues are distributed. 

So, if such a favorable situation happens then one may go to use shifted inverse power method. 

Otherwise, it is not that easy for us to use this method in any practical situations. Assume that 

we got this ν somehow then how to compute λ𝑗 is our question now. Once you have such a ν 

then probably by looking at this you can get an idea of how we are going to capture λ. 
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What you can do is, you apply the inverse power method to 𝐴 − ν𝐼. So, this is called the shifted 

matrix and you apply inverse power method to this matrix. Inverse power method is applied to 

𝐴 − ν𝐼 that is equivalent to saying that apply power method to (𝐴 − ν𝐼)−1. That is the idea. 
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We do not need to give the procedure for this because it is just the same as what we have given 

in the inverse power method; only thing is instead of 𝐴−1 now we have to put (𝐴 − ν𝐼)−1. That 

is the only difference. Let us consider this example. Now once you have this you will have to 

use an appropriate ν. As I told you this is generally not possible perhaps if you are very lucky 

you may get an idea of how to choose this nu from Gerschgorin’s disk of either A or 𝐴𝑇. 

 

I will leave it to you to think how to do that for some appropriate matrices; we will give you 

some such matrices in exercise problems. But here, to keep our discussion very simple; let us 

know what are all the eigenvalues and the corresponding eigenvectors of this matrix A. These 

are given by λ1, λ2 and λ3 and the corresponding eigenvectors are given here. Now let us try to 

capture λ2 and eigenvector of λ2. 

 

Let us see how this is going to happen. For that we have to choose and ν, let me choose ν as -

2.4, you can choose any number in such a way that |λ2 − ν|  <  |λ1 − ν| and this is strictly less 

than |λ3 − ν| also. So, this choice of ν is going to work; therefore I chose like this. You can 

also choose any value. 
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And now we have to apply the inverse power method for 𝐴 –  ν𝐼 that is 𝐴 + 2.4 𝐼. You can 

clearly see that the eigenvalues of 𝐴 − ν𝐼 are given like this. 
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Now we have to find the LU-factorization of 𝐴 −  ν𝐼. I have gone for the Doolittle 

factorizations, you can go for either Gaussian elimination or Crout factorization or even if the 

matrix is symmetric and positive definite you can go for Cholesky’s factorization also. But I 

have gone here for Doolittle factorization. As per this the lower triangular and the upper 

triangular matrices are given like this. 
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And the iterations are given like this. I have stopped this iteration procedure at the 5th iteration 

because you can see that from the 4th iteration to 5th iteration there was no much improvement 

at least to the number of digits that we have shown here. That is why I have stopped up to here. 

If you want more accurate then you have to go for more iterations. That is the only need here. 

 

But I am happy with this because it is just an illustration. So, I stop here. Therefore, you are 

iteration μ𝑘 sequence is converging to remember it is going to converge to 
1

λ2−ν
. Remember we 

are now working with shifted matrix. Therefore, your μ𝑘 is going to converge to 
1

λ2−ν
 and since 

μ5 is given by -7.61, you can see that 
1

μ5
 is something like of course -1 / 7.61. 

 

That is in my calculation approximately equal to –0.1314. So, that is going to be approximately 

equal to λ2  −  ν, because μ is going to converge to λ2  −  ν. Therefore 
1

μ𝑘
 will converge to λ2  −

 ν. I have just stopped at the 5th iteration. Therefore, I am going to consider this value as an 

approximate value to λ2  −  ν, but remember ν is taken as -2.4. 

 

Therefore λ2 = -0.1314 + ν that is nothing but -2.4 and that is equal to –2.5314. So, that is the 

λ that we are trying to obtain from the shifted inverse power method. Let us see what is the 

value of λ that we have taken previously. That is also approximately the same; it is -2.5313, 

what we got is -2.5314. So, we are pretty good in our approximation and the corresponding 

eigenvector captured by our shifted inverse power method is (1, -0.06, 0.04). 

 



You can also see that it will be a scalar multiple of the corresponding eigenvector that we have 

chosen in our first line. So, this gives us an idea of how we may capture other eigenvalues of a 

given matrix. But there is a serious disadvantage in this approach that we do not know how to 

choose this scaling parameter ν. Apart from that the method is very interesting. With this we 

will finish our discussion of power methods. I thank you for your attention. 


