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Eigenvalues and Eigenvectors: Power Method (Construction) 

 

Hi, today we will start a new topic; this is on methods for computing eigenvalues and 

eigenvectors. In this lecture we will derive a method called power method. Before getting into 

the method let us quickly recall what is mean by eigenvalues and eigenvectors of a matrix. 
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We are given a 𝑛 × 𝑛 matrix of course with real entries. Eigenvalues of A are defined as the 

root of the equation 𝑑𝑒𝑡(λ𝐼 − 𝐴) = 0. Note that 𝑑𝑒𝑡(λ𝐼 − 𝐴) is a polynomial in λ of degree n 

and it is called the characteristic polynomial of the matrix A. 
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When n = 2 the characteristic polynomial is a quadratic polynomial and we know how to get 

the roots of this polynomial. When n = 3, well with little difficulties we can still somehow 

compute the roots of the characteristic polynomial. For n = 4 and for 𝑛 > 4 it is rather difficult 

to compute the exact roots of the polynomial. We do not have any formula to compute the roots 

when it comes to fourth degree or higher degree polynomials. Therefore, one has to go for 

some numerical approximation in order to get the eigenvalues of a matrix. 
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One obvious way of approximating eigenvalues of matrix is to first write the polynomial 

explicitly in λ and then use some non-linear solvers which we will be introducing in the next 

chapter. That is polynomial equations or non-linear equations we have some iteration methods 

to obtain approximate roots of non-linear equations. We can use one of such methods to 



approximate the roots of a polynomial equation also. But this is not so good because of 2 

reasons. 

(Refer Slide Time: 02:56) 

 

One reason is that obtaining explicit form of the polynomial is itself a difficult task especially 

when the dimension of the matrix is very large and second thing is polynomials are very 

sensitive to errors. It means if you make a small error in the coefficients of the polynomials 

then the corresponding root may be drastically different. 
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Let us have an example to see how dangerous it is to deal with polynomials when we tend to 

make errors. Let us consider a function 𝑓(𝑥) = (𝑥 − 1)(𝑥 − 2) ⋯ (𝑥 − 10) you can see that it 

is a polynomial of degree 10 with roots as 1, 2, 3 up to 10. Now what we will do is we will 



make a slight perturbation in the coefficient of 𝑥10 terms in the polynomial 𝑓(𝑥) and we will 

call this new perturbed polynomial as 𝐹(𝑥). 

 

One can see that the real roots of the polynomial equation 𝑓(𝑥) = 0 that is 𝐹(𝑥) = will lie in 

the interval 1 to 3.5; well you can verify this graphically. 
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In this graph we have plotted both the polynomials 𝑓(𝑥) as well as 𝐹(𝑥), 𝑓(𝑥) is plotted in 

blue solid line, you can see that the point of intersection of the graph with the line x = 0 or the 

roots of this polynomial and similarly the graph of the function 𝐹(𝑥) is shown in red solid line. 

Again, you can see what all the roots of this polynomial equation are at least roughly. And you 

can see that after around 3.4 the graph of the function 𝐹(𝑥) tends to increase and it never again 

comes back to intersect the x-axis. 

 

That shows 𝐹(𝑥) = 0 has roots between 0 to around 3.4, whereas 𝑓(𝑥) has roots 1, 2, 3 up to 

10. So, what is the difference between 𝑓(𝑥) and 𝐹(𝑥)? There is only one percent error in the 

coefficient of 𝑥10. Otherwise, these 2 polynomials are same. So, a small perturbation therefore 

in any of the coefficients of a polynomial can make the roots entirely different from the original 

one. 

(Refer Slide Time: 06:15) 



 

Therefore, constructing the polynomial explicitly from the expression 𝑑𝑒𝑡(λ𝐼 − 𝐴) = 0 

especially on a computer may tend to make some rounding error and that in turn will give you 

a polynomial in λ which may have entirely different roots than what actually we wanted as 

eigenvalues of the matrix A. Therefore, it is not a good idea for us to go for solving the 

polynomial equations in order to get eigenvalues of the matrix at least computationally. 
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An alternate idea is what we are going to learn in this class and that is the power method. Let 

us see how to obtain eigenvalues without solving the characteristic polynomial. Power method 

is actually used to obtain a specific eigenvalue of a given matrix called the dominant eigenvalue 

and it also approximates corresponding eigenvector of the dominant eigenvalue of a given 

matrix A. First let us understand what is mean by dominant eigenvalue? 

 



You are given a matrix A which is a 𝑛 × 𝑛 matrix and let μ1, μ2, ⋯ , μ𝑛 be the eigenvalues of 

A, they are repeated according to their algebraic multiplicity. Now what you do is first you 

arrange them in a way that after rearranging the eigenvalues will satisfy this sequence of 

inequalities. That is suppose you have μ1 = 2 and μ2 = −5 and μ3 = 1 then what you do is 

you name λ1 = −5 and λ2 = 2 and λ3 = 1. 

 

So, that |λ1| ≥ |λ2| ≥ |λ3|. It is just a rearrangement there is nothing new in this and then we 

call λ1 as the dominant eigenvalue of the matrix A. 
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Let us see few examples let us take this matrix A = 1, 0, 0, 0, -2, 1 and 0, 0 -1, you can see that 

the eigenvalues are 1, -1 and -2. Therefore, you take λ1 = -2, λ2 is equal to you can take either 

-1 or +1, λ3 = 1 and you can see that λ1 is the dominant eigenvalue of this matrix and you can 

also see that the dominant eigenvalue of the matrix A is unique. 
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Let us see another example. Here the eigenvalues of the matrix B are 1, -2 and 2. You can see 

that although B has distinct eigenvalues, its dominant eigenvalue is not unique because both -

2 and 2 will come as dominant eigenvalues. 

(Refer Slide Time: 10:11) 

 

Now let us see the conditions under which we can apply power method. Power method 

demands that the dominant eigenvalue should be unique; it means |λ1| > |λ2| and then other 

thing goes as usually. Therefore, the dominant eigenvalue should be unique. If you recall the 

matrix A comes under this condition whereas matrix B will not come into this condition; 

although it has distinct eigenvalues, that is interesting here. 

 

The next condition is that the corresponding eigenvectors which we will denote by 𝒗1, 𝒗2 up 

to 𝒗𝑛 are real and forms a basis for ℝ𝑛. That is all these vectors should be linearly independent. 



This is also a condition under which you can apply the power method. Now once you assume 

this condition that is the eigenvectors forms a basis it means what you are given any vector 𝒗 ∈

ℝ𝑛 that vector v can be written as a linear combination of the eigenvectors. That is what we 

mean by saying that this set of eigenvectors form a basis. 
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Now once you have this representation of a given vector then what you do is, you pre multiply 

this equation by A, which is also done on the hand side and note that all these 𝒗𝑖 's are 

eigenvectors. Therefore, 𝐴𝒗𝒊 = 𝛌𝒊𝒗𝒊. So, you use this in the above equation to get 𝐴𝒗 = 𝒄𝟏𝑨𝒗𝟏 

will become λ 𝒗𝟏 and so on. You have till 𝑐𝑛λ𝑛𝒗𝒏. 
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Now what you do is, you just take this 𝜆1 outside and write this expression as 𝜆_1(𝑐1𝒗𝟏 +

𝒄𝟐 (
𝝀𝟐

𝝀𝟏
) 𝒗𝟐 + ⋯ + 𝒄𝒏 (

𝝀𝒏

𝝀𝟏
) 𝒗𝒏. Now what you do is, pre multiply this equation by A again that 

will give you again all this, 𝐴𝒗𝟏 will give 𝜆1𝒗𝟏, 𝐴𝒗𝟐 will give 𝜆2𝒗𝟐 and so on 𝐴𝒗𝒏 will give 

𝜆𝑛𝒗𝒏. Again, remove one λ1 from here and write it as λ1
2. 

 

And therefore, you will have the first term as 𝑐1𝒗𝟏 and the second term is 𝑐2. Now already you 

have λ2, you are getting one more λ2 from here and one more λ1 in the denominator will come 

because you are pulling one λ1 outside. Therefore, it is  (
λ2

λ1
)

2

𝒗𝟐+ so on till 𝑐𝑛 (
λ𝑛

λ1
)

2

. 
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And now you keep on doing this that is you keep on pre multiplying A and every time you 

remove λ1 outside and write the expression accordingly. At any k stage you have λ𝑘𝒗 is equal 

to you would have pulled k times λ1 outside. Therefore, you have λ1
𝑘 and then 𝑐1𝒗𝟏 and at the 

same time you will also have λ2
𝑘 and since you have pulled λ1

𝑘 out, therefore you have (
λ2

λ1
)

𝑘

𝒗𝟐 

and so on till 𝑐𝑛 (
λ𝑛

λ1
)

𝑘

𝒗𝒏. 
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So, we have this expression. Now you recall that we assumed that the dominant eigenvalue of 

A is unique. Therefore, we have 
|λ𝑗|

|λ1|
< 1. Now let us use this condition in the expression that 

we got previously that is by pre multiplying A, k times to 𝒗 we obtained this expression. Now 

you see each of this term is going to be something less than 1 when you take the modulus on 

both sides. 

 

That shows that as 𝑘 → ∞ these terms go to 0. So, what we will be left out with is that this is 

going to 0, this is going to 0 and therefore we are left out with 𝐴𝑘𝒗 = 𝛌𝟏
𝒌𝒄𝟏𝒗𝟏. Therefore, limit 

𝑙𝑖𝑚
𝑘→∞

𝐴𝑘𝒗

λ1
𝑘  will be scalar multiple of the eigenvector 𝒗𝟏 corresponding to λ1. That shows that the 

sequence {
𝐴𝑘𝒗

λ1
𝑘 } converges to an eigenvector of λ1. That is what we understand. 

 

Remember this 𝒗 is any vector in ℝ𝑛, we have not specified any condition on this. Only thing 

is you can observe that in order to get an eigenvector for λ1 you should have this 𝒗 in such a 

way that in its representation. That is if you recall we started with 𝒗 = 𝒄𝟏𝒗𝟏 + ⋯ + 𝒄𝒏𝒗𝒏. This 

scalar 𝑐1 should be non zero. Why it is so because otherwise you will just have a 0 vector here 

which is not an eigenvector of λ1. 

 

So, in order to have a non-zero vector here we need to have the 𝑐1 to be non zero. That is very 

important. So, you can see that we have obtained a sequence which may converge to an 

eigenvector of the dominant eigenvalue λ1. That is what we have understood from this simple 

calculation. 
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Now let us try to construct a sequence that converges to the dominant eigenvalue λ1. How are 

we going to do this? Again look at this expression as k tends to infinity all these terms are going 

to go to 0 and you only have this term. Now what you do is you take one of the components of 

this vector; remember this is a vector and similarly the right hand side is also a vector. 

 

You just pick up one component say 𝐴𝑘𝒗 is a vector, you just take a component say ith 

component which is not equal to 0. Now what you do? The same component you take from 

𝐴𝑘+1𝒗 also. Then you can see that this term is nothing but 
λ1

𝑘+1

λ1
𝑘 (𝑐1𝑣1)𝑖. This is a vector and its 

ith component plus all the other terms which are finally going to give us a n-dimensional vector. 

 

And you take the ith component of that vector also, you can see that this entire thing goes to 0 

as k tends to infinity and therefore you land up with this and this is for k + 1 and similarly you 

have for the denominator also, what is that? It is also 𝑐1𝑣1. The first term is the same plus it 

has this vector which is obtained at the kth step and its ith component. That does not matter, if 

this will also go to 0 and what remains is going to be equal, therefore they get canceled. 

 

Here also λ1
𝑘 will get canceled with λ1

𝑘 here and you will be left out with just λ1. So, that is how 

we are getting the sequence for approximating the dominant eigenvalue of the matrix A. 
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So, what we did so far; we just started with some arbitrary vector 𝒗, we wrote that vector as 

𝑐1𝒗𝟏 + 𝒄𝟐𝒗𝟐 + ⋯ + 𝒄𝒏𝒗𝒏 and of course the first scalar should not be equal to 0. This is just a 

construction; we are not defining it as a method of course when we are going for a power 

method it means we do not know what are the eigenvalues and what are the eigenvectors. 

 

That is why we are going for an approximation procedure, but this is theoretically what we 

have to impose as a condition. However, in practice we will not know this therefore you just 

have to start with some arbitrary vector and just go ahead with the method. So, once you have 

this vector chosen then you keep on multiplying A with it and every time on the right hand side 

you pull λ1 out. 

 

In that way we have constructed 2 sequences; one sequence converges to the dominant 

eigenvalue and another sequence that we constructed converges to corresponding eigenvector 

of the dominant eigenvalue if at all these sequences converge. If they converge, they converge 

to what we actually want. However, the question is will they converge? That is the question. 
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Let us write this method in a systematic way. So that, it can be implemented on a computer. 

Let me explain you the computational procedure first and then we will write the algorithm in a 

nice systematic way. To compute the dominant eigenvalue and a corresponding eigenvector 

using power method what we have to do is; first choose an arbitrary vector 𝒙(0). Theoretically 

that 𝒙(0) should satisfy certain conditions. 

 

That we will list later; one condition we have already seen that its representation in terms of 

the eigenvectors should have its first term that is 𝑐1 to be non zero. So, that is something which 

is expected but practically we do not know. So, therefore practical implementation in that sense 

is a blind implementation. You just have to take an arbitrary vector and then what you do is 

you find a vector 𝒚(1) which is given by 𝐴𝒙(0). 

 

Remember we have to keep on pre multiplying A with the vector that we have chosen. That is 

the only idea in power method; we are doing the same thing in a rather algorithmic way. So, 

first choose the vector 𝒙(0) and multiply A with 𝒙(0), call that as 𝒚(1). Then what you do is you 

define a scalar μ1 which is nothing but the coordinate of y at which the maximum norm is 

achieved. 

 

Suppose 𝒚(1) is say (-1, 5 and 0) then μ1 = 5 or suppose 𝒚(1) = (2, -5 and 1) then μ1 is -5 it is 

not +5, because when you are finding the maximum that will take modulus, but you pick only 

the index and take the value as μ1 not the absolute value. This is something which often students 



make mistake, they take modulus of 𝒚𝑖
(1)

, you should not take that and now what you do is 

define a vector 𝑥(1) =
𝒚(1)

μ1
. 

 

Now this completes one typical iteration. Once you get 𝒙(1) now again you go to find 𝒚(2) 

which is equal to 𝐴 𝒙(1). Once you get this then find that coordinate of 𝒚(2) at which the 

maximum norm is achieved. To have a precise choice of this we will take the minimum index 

at which the maximum is achieved. That is suppose if you have 𝒚(2) as say (-1, 2, -2) then the 

maximum norm is achieved both at the second coordinate as well as at the third coordinate. 

 

So, we will choose the second coordinate. That is, we will take μ2 as 2, so μ2 = 𝒚𝑖
(2)

, where 𝒚𝑖 

is the coordinate with minimum index at which the maximum norm is achieved. Once you have 

this you will go for computing 𝑥(2). That is nothing but 
𝒚(2)

μ2
. Like that you will keep on going. 

Once you get 𝒙(2) again you will find 𝒚(2), μ3 and then 𝒙(3) and it goes on. In that way you 

have an iterative sequence. 
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Let us put this iterative sequence in a little better way. So, you are given 𝒙(0) which is arbitrarily 

chosen then for each k we define 2 sequences; one is a sequence of real numbers {μ𝑘} and 

another is a sequence of vectors {𝒙(𝑘)}; they are given by μ𝑘+1 = 𝑦𝑖
(𝑘+1)

and 𝒙(𝑘+1) =
𝒚(𝑘+1)

μ𝑘+1
. 

What is 𝒚(𝑘+1)? 𝒚(𝑘+1) is nothing but 𝐴𝒙(𝑘). So, you start with 𝒙(0), you plug in here; you get 

𝒚(1) 



. 

 

And once you have 𝒚(1) you go to find μ1 and once you have μ1 you go to find 𝒙(1) and then 

again once you have 𝒙(1) you again plug in here get 𝒚(2); once you have 𝒚(2) you plug in here 

to get μ2 and once you have μ2 you plug in here to get 𝒙(2) and so on. So, that is a very clear 

algorithm that we got and this is called the power method. So the outcome of the power method 

is a pair of sequences. One is a sequence of real number and another one is a sequence of 

vectors. 

(Refer Slide Time: 28:07) 

 

Let us take an example. Let us consider this matrix A just for the information the eigenvalues 

of A are given like this. You can see that A has a dominant eigenvalue 3 which is the unique 

dominant eigenvalue for A. For information we will also see what are the eigenvectors that we 

are considering here. The eigenvectors are 𝒗1 = (1, 0, 2) which corresponds to λ1, 

𝒗2 corresponds to λ2 and 𝒗3 is taken like this which is an eigenvector of λ3. 

 

Now this is just for the information, we do not need this information in order to work with the 

power method, it is just for our information, whereas to run the power method we just need this 

initial guess. 
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Remember as far as the implementation is concerned, we can simply take this 𝒙(0) as a arbitrary 

vector. Once you have this you will calculate 𝒚(1) which is given by 𝐴𝒙(0) and that happens to 

be this vector. Now from here you will find the maximum of the absolute values of this 

coordinates and that is achieved in the third coordinate in this vector and therefore μ1 is taken 

as 7.25. Once you have μ1 you will compute 𝒙(1) which is 𝒚(1) divided by μ1 and that is given 

by this vector. 
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Now let us go to compute the second iteration. Here you will take the 𝒙(1) which was computed 

in iteration number 1, plug in here and you will get 𝒚(2) as 𝐴𝒙(1). Again, you see which 

coordinate is achieving the maximum norm that is coming again in the third coordinate. 



Therefore μ2 is taken as this value and then 𝒙(2). You just observe how the {μ} is going and 

also observe how the {𝒙(𝑘)} is going on. 

 

You can see that in the first iteration μ was 7.25, in the second iteration it jumped actually 

pretty close to 3, we are expecting μ2 converges to λ1 and {𝒙} is expected to converge to a 

scalar multiple of 𝒗1. Let us see how the next iteration goes. The next iteration gives us μ3 

equal to its little more closer to 3 therefore μ is going very well, 𝒙(3) is coming like this. You 

can observe that 𝒙(3) is actually going closer and closer to 
1

2
𝒗1. 
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Let us go ahead 𝒙(4) pretty close to 3 and this is also pretty close to 
1

2
𝒗1. 
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 𝒙(5), similarly you can go on computing 𝒙(6), 𝒙(7), 𝒙(8), 𝒙(9), 𝒙(10) and so on. 
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You can keep on going, but I have stopped my computation at the iteration number 10. You 

can see that your μ is pretty close to the dominant eigenvalue of the matrix A and 𝒙(10) is pretty 

close to 
1

2
𝒗1. So, that is what we could observe here. Now the question is when does the power 

method converge and if it is converging will we know that the {μ} will converge to the 

dominant eigenvalue. 

 

And the {𝒙(𝑘)} will converge to a scalar multiple of 𝒗1, we can also see what is that scalar 

multiple. Here it happens to be 
1

2
; you can also understand what is that scalar multiple and so 



on. For that we have to understand the convergence theorem of power method which we will 

do in the next class. Thank you for your attention. 


