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Hi everybody, we have introduced some iterative methods for solving linear systems, we have 

introduced Jacobi method, Gauss-Seidel method, we have also introduced successive over 

relaxation method. In this lecture we will implement the Jacobi method as a python code. Let 

us quickly recall the Jacobi method. 
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In our theory class, we have derived the Jacobi method in particular for a 3 × 3 system. Let us 

quickly recall the formula for the Jacobi method in the case of a 3 × 3 system, we are given a 

initial guess 𝑥(0). In this case it is a 3-dimensional vector then the Jacobi iterative sequence can 

be computed using this formula and this has to be done for each k = 0, 1, 2 and so on. 

 

Let us recall the formula. There are 2 important points to be noted in this formula as far as the 

coding is concerned. In each of the components of the vector 𝑥(𝑘+1) what we are doing is that 

we are keeping the diagonal element on the left-hand side and moving all the non-diagonal 

element to the right-hand side. Therefore, in each component we have 2 terms and in this we 

do not include the diagonal term. 

 



That is the first point to note and second thing is, we are dividing both sides by the diagonal 

element 𝑎𝑖𝑖. In the first equation it is 𝑎11 and second equation it is 𝑎22 and in the third equation 

it is 𝑎33. Therefore, we have to make sure that all these diagonal elements are non-zero. These 

are the important points that we have to keep in mind when we are developing the code for 

Jacobi method. To have a clear idea let us put this formula in the general case when our system 

has n linear equations. 
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In this case our initial guess will be an n-dimensional vector which is generally chosen as per 

our wish and then for each iteration you have to compute now n components of the vector 

𝑥(𝑘+1) and each component is computed using this formula again you note that the summation 

on the right hand side should exclude the diagonal term. That is the summation should run from 

j = 1 to n, where you should not include the term j = i here. 

 

That is one thing and second thing is when you compute the components you have to make 

sure that the diagonal elements are non-zero. Before going to the code let us see how many 

loops are involved in this computation. The first loop in our code should run for the iterations 

and the index is denoted by k. Therefore, our first loop is for the iteration and for each k we 

have to compute the vector 𝑥(𝑘+1). 

 

And remember 𝑥(𝑘+1) has n components; therefore, our second loop should run for the 

components of the vector 𝑥(𝑘+1) and that is your second loop and there is one more loop in 

each component of the vector 𝑥(𝑘+1) we have to find the value of this sum. Therefore, the third 



loop should run for j = 1 to n and that is your third loop and remember in this third loop you 

have to exclude one term that is the diagonal term. 

 

Which means, you have to always check whether j = i or not. If 𝑗 ≠ 𝑖 then you have to include 

the term into your summation. If 𝑗 = 𝑖 then you have to exclude it. We can see that all these 

loops will be nested loops and therefore the code will be little confusing. Mathematically Jacobi 

method is a very simple and easy to understand method. However, the computer code will be 

little confusing. Therefore, we will carefully try to understand this. 
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Let us go into the code now. The first part of our code is to include some modules into our 

program. Here we are including 2 modules; one is numpy which is mainly used to declare the 

arrays and the second one is the matplotlib which is used to plot some graphs mainly. In our 

program, at the end we will plot the 𝑙2 norm of the error involved in each iteration. For that 

purpose, I am also importing matplotlib module. 

 

The next part of our code is input. Here we are taking the left hand side coefficient matrix in 

the variable called A and we are taking the right hand side vector in the variable b and finally 

the initial guess is taken in the variable x. You can see that A is a 2-dimensional array whereas 

B and X are one dimensional array. With this you can see that we are trying to solve the linear 

system 𝑥1 + 0𝑥2 + 𝑥3 = 0, −𝑥1 + 𝑥2 + 0𝑥3 = 0 and finally 𝑥1 + 2𝑥2 − 3𝑥3. 

 



And the initial guess 𝑥(0) is taken to be (1, 1, 1). And this variable corresponds to the number 

of iterations that we wish to run. I have taken it as 12, if you want to have more iterations you 

can increase the value of N. With all these inputs, let us go to the main part of the program. 
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At the first stage we are trying to see what is the length of the array b and we are taking that 

into the variable n. This is to sense what is the dimension of our system. In this particular input 

we have taken a 3 × 3 system; therefore we could have directly written 3 here but I want to 

make our code general. So, that you go to enter a matrix A which is say 4 × 4 matrix or 5 × 5 

matrix and correspondingly the vectors b and x, then that should be automatically taken into 

consideration in our main program.  

 

That is why I do not want to directly feed the value 3 in this variable n rather I want to find it 

from the length of the array b which will precisely be the dimension of our system. Then, I am 

declaring a variable called indicator, we will see why we are using this variable. Then the next 

part of our code is to check whether all the diagonal elements are non-zero. 

 

This is one of the main points which we have noted from our previous slide that we have to 

check that all the diagonal elements are non zero. If at least one diagonal element is 0 then we 

do not want to go ahead with the Jacobi method. So, what we are doing is we are simply printing 

that the Jacobi method fails and then we are putting the value in the variable indicator as 0. 

 



Remember we have initialized the variable indicator as 1. Now we have put the value 0 into 

the indicator. That says that we should not compute the Jacobi iteration. Let us see how we are 

sensing that? Let us get into the main part of the Jacobi method. 
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And this main part is executed only when the value of the indicator is 1. If the value in the 

indicator is 0 then the python control will not enter into the if statement. Since from our 

previous for loop you can see that if any one of the diagonal elements is 0 then the indicator 

will become 0 and therefore the control will not enter into this if statement. If all the diagonal 

elements are non-zero then this part of the statement is never executed. 

 

Therefore, the indicator will hold the value 1 which was initialized previously and therefore 

the python will enter into this if statement and that is the idea. Remember for the system that 

we have given you can see that all the diagonal elements are non-zero. Therefore, we will get 

into this if loop and we will start computing the iterations. As we have seen the first Loop of 

our method is going to be for the iteration and it is denoted by k, mathematically. 

 

And the k runs from 0 up to N - 1. Remember N is the variable we have used to store how 

many iterations we want to compute in our method. If you recall we have taken N = 12 in the 

input. Therefore, this loop will run for k = 0, 1, 2 up to 11. Then the first step of this loop is to 

allocate memory for x. If you recall we already allocated memory for 𝑥(0)and we have stored 

the vector (1, 1, 1) in that memory. 

 



Now what we are doing is we are allocating another memory. For this for the variable 𝑥(1) 

which is the vector from the first iteration of the Jacobi method. When we create the memory 

for this variable we are initializing it as (0, 0, 0) and then we will try to compute each of these 

coordinates using the Jacobi formula. That is the idea. If you recall what is the Jacobi formula? 

 

The Jacobi formula is given like this for the coordinates of the vector 𝑥(𝑘+1). Let us see how 

to compute that. The next loop is for the components of the vector 𝑥(𝑘+1) and that is our second 

loop. 
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Let us write the formula step by step and see how to implement it here. If you recall x[k + 1][ 

i] is equal to you have 1/𝑎𝑖𝑖 and then you have the bracket in that you have 𝑏𝑖 minus some 

summation. In that we are first taking the value of 𝑏𝑖 into x[k+1][i] here. Remember when we 

initialized this vector 𝑥(𝑘+1). Remember when k = 0 it is simply 𝑥(1) and we have initialized it 

as (0, 0, 0). 

 

And then we came into the second loop which runs for each component of the vector 𝑥(1). In 

that we are first storing the value of 𝑏𝑖 into 𝑥𝑖
(1)

 and then we are getting into our third loop. 

What is our third loop? Third loop is for the summation which is involved on the right hand 

side of this formula. If you recall that is sigma j = 1 to n and you have to exclude the diagonal 

element. 

 



And then it is 𝑎𝑖𝑗𝑥𝑗
(𝑘)

, the previous iterations value. So, let us see how to implement this 

summation. For that we are running this innermost loop with the index as j. The first line is to 

check whether j is not equal to i and this summation will happen only if j is not equal to i then 

what we do is, we will take the previous value of x[k+1][i] and with that we will subtract 

a[i][j]*x[k][j]. 

 

This is something like initially we had 𝑥𝑖
(𝑘+1)

= 𝑏𝑖. That was the first value which is assigned 

into 𝑥𝑖
(𝑘+1)

 and then when j = 0 what you are doing is you are subtracting 𝑎𝑖0𝑥0
(𝑘)

, the previous 

iteration. You see you have k here that is because you are taking the value from the previous 

iteration and this is like the first component of the ith row and then when it goes to the second 

time in the loop j becomes 1. 

 

Therefore, when it comes for the second time of course it will check the if condition. If this if 

condition is satisfied then 𝑥𝑖
(𝑘+1)

 is holding now the value given by this expression. From that 

value now you are again subtracting 𝑎𝑖1𝑥1
(𝑘)

and like that this loop will go on till j touches n - 

1. When you come out of this loop you will have the value of this expression for the 

corresponding ith coordinate. 

 

Finally, what you have to do once you finished computing this expression inside the bracket 

then you have to divide that value by 𝑎𝑖𝑖. That is what we are doing now in this step, after 

executing this loop you are coming out of this loop and then taking whatever value you obtained 

that is precisely the value of this expression inside the bracket and then you are dividing it by 

A[i][i]. You see here you are dividing it by A[i][i]. 

(Refer Slide Time: 17:54) 



 

That completes the calculation of one component of the vector 𝑥(𝑘+1). That is 𝑥𝑖
(𝑘+1)

. And this 

has to go for each i = 0, 1, 2 up to n – 1. Once that is done then you get the vector 𝑥(𝑘+1). Once 

𝑥(𝑘+1) is done then you will go back to the outermost loop, you will increment k by 1 more 

and then you will initialize the memory for the new x which is the vector of the next iteration 

and then you come to compute the value of the components of that vector. 

 

Like that the loop will go on, how many times? Well, the number of times that we have 

specified in the variable N. Once the iterations are calculated for N number of times then python 

will come out of this entire loop and print this statement which says that approximate solution 

after that N number of times. Remember we have given the value of N as 12. Therefore, it has 

to print approximate solution after 12 iterations equal to it will print the vector x[N]. That is 

whatever the iteration it has calculated at the Nth stage will be printed as the output. 
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Next, we are also interested to have a feeling on how the error looks like. For that what we are 

doing here is that we are calculating the 𝑙2 norm of the error involved in the kth iteration. That 

is we are computing 𝑒(𝑘) and then taking the 𝑙2 norm of it. First let us see what is the error 

involved in the kth iteration. By definition the error involved in the kth iteration is equal to the 

exact value that is the exact solution of our system minus the vector computed at the kth 

iteration. 

 

Recall that we have taken the right hand side vector of our system as the zero vector. Therefore, 

the exact solution is 0 because our matrix A is invertible and hence the error involved in the 

kth iteration is simply −𝑥(𝑘) only. Now let us see what is the formula for the 𝑙2 norm of any 

vector in particular what is the 𝑙2 norm of ||𝑒2
(𝑘)

||? That is nothing but square root of e first 

component square + e second component square and so on till the nth component of the vector 

𝑒(𝑘) square. 

 

So, that is the formula for the 𝑙2 norm and you can observe that we have computed 𝑙2 norm for 

each k = 0 to N. As a first step we are initializing the variable errl2. This is going to have the 

𝑙2 norm of the error of all the iterations; we are initializing this variable with 0. Remember it 

is created as an array of dimension N + 1 and then for each k from 0 to N. 

 

Therefore, you can see that this for loop will run for N + 1 times. For each time it will compute 

the 𝑙2 norm of the error involved in the kth iteration of the Jacobi method and then once it 

computes the inner sum then it takes the square root and that will finally give you the 𝑙2 norm 



of the error at the kth iteration. I am also printing the 𝑙2 norm of the last iteration here and 

finally we are plotting the graph of errl2 as a function of k. 
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That is done in this part of our code. I will leave it to you to see how this is done; there is 

nothing to explain here. Let us see the output of this code. The code is executed and let us see 

the output recall that as the first stage we are printing the approximate solution after 12 

iterations. So, that is what we expect to be printed as the first output of our code. 
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You can see that it is printed here approximate solution after 12 iteration is given by this vector; 

you can see that it is still far away from the zero vector. Recall the exact solution of the system 

that we have taken as an input has the exact solution as the zero vector. Here you can see that 

after 12 iterations it has only given this as the approximate solution which is rather a bad 



approximation. And also you can see what is the 𝑙2 error involved in this. Obviously, it is 

around 0.8. Let us see the plot of the 𝑙2 norm of the error and that is given here. 
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The iteration started somewhere here and the error kept on decreasing. It came up to 0.8 around 

and then it stopped, because we asked the code to compute only 12 iterations. Maybe if you go 

on further in the iteration you may get better and better approximation to our solution. Let us 

also see that. 
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Let us do say 50 iterations and see how the approximation is improved. Let us run the code 

with N = 50 and see what is the improvement in our result. 
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Now you can see that the 𝑙2 error is almost 0.09. 
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Also let us see the plot of the 𝑙2 norm of the error; you can see that somewhere here and then 

further the error decreased and going closer and closer to 0. Let us go further in the iteration 

and see what is happening. 
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Let us say go up to 100 iterations and see what is the result now. 
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You can see that the approximation is quite good now. The 𝑙2 norm of the error is around 0.005, 

you can also see the solution. The solution is now pretty close to the zero vector. So, you can 

see here the computed solution is pretty close to the exact solution and we can also see that the 

error is considerably reduced and going very close to 0. Now if you go on with the iteration it 

will go more and more close to 0. 
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Let us also see what happens if one of the diagonal elements is 0. Say for instance let us take 

𝑎22 as 0 and see what is happening. Let us execute the program. 
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Now you can see that the code hit the error message, it just flashed the error message that Jacobi 

iteration failed and it did not get into the main loop. 
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That is because A[2][2] is 0. Therefore, it satisfied this if condition. So, python entered into 

this if statement and printed this command and put indicator as 0. Since indicator is 0 this 

statement is false and therefore python could not enter into the main part of the program. 
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That is python could not further compute the iterations of the Jacobi method and therefore it 

could not also print the solution and so on. It just ended the program by printing the error 

message only and that is why we only see the error message as the output here. There are 2 

main disadvantages in this program the first disadvantage is the way we have managed the 

memory. 

 

You can see that we are allocating a fresh memory for x at every iteration. That is we have first 

initialized 𝑥(0) and then when you come to compute 𝑥(1) you have allocated a fresh memory 



for this 𝑥(1) and then stored the computed values of the components of 𝑥(1) in that memory and 

when you go to the second iteration again you created a fresh memory for 𝑥(2) and store the 

values of the components of 𝑥(2) in this memory and so on. 

 

Every time you go for the fresh iteration you are creating a memory for that. This can be quite 

costly if your system is very large and you want to do many iterations then you need lot of 

memory while running this code, but if you carefully observe once you compute 𝑥(1) you no 

longer need the values stored in 𝑥(0). Because 𝑥(2) is computed by only keeping 𝑥(1) values, 

we never use 𝑥(0) values. 

 

In general, to compute 𝑥(𝑘+1) we only need 𝑥(𝑘), we do not need 𝑥(𝑘−1), 𝑥(𝑘−2) and so on. 

Therefore, remembering all these computed values is unnecessary as long as the Jacobi method 

computation is concerned. Unless you want to remember all these vectors from the method you 

really do not need to remember all these vectors. 
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There is one more main disadvantage in our code. If you see we are asking the code to run the 

iterations for some pre-assigned number of times. Now we really do not know after computing 

the iterations this many times whether we have achieved the accuracy that we want. Say for 

instance at the first stage we have given only 12 iterations and we have not achieved a good 

accuracy. 

 



In this particular example we know the exact solution. Therefore, we can see that we have not 

achieved a good accuracy and so we increase the number of iterations from 12 to 50. Then we 

saw that it is good but still not enough. So, we increased from 50 to 100; like that you can go 

on. But for that you need to know the exact solution. If you do not know the exact solution then 

blindly you have to specify some big number. 

 

It may happen that after computing so many iterations you might have not still achieved the 

required accuracy or you might have achieved the accuracy much before than what you 

specified here. So, in that way going with giving number of iterations and computing the 

approximation is rather a blind approach. We need a good stopping criterion. That is, we want 

some condition that will tell us that we have achieved the required accuracy. 

 

Therefore, we can stop the iteration at this stage. Let us see how to design a good stopping 

criterion. 
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For that let us see what are all the ways that we can measure the error involved in our computed 

solution. Let 𝑥∗ denotes the computed solution from any method. Remember, this is not only 

restricted to Jacobi method what we are discussing here as a stopping criteria can be used for 

any method. So, we are assuming 𝑥∗ to be the computed solution from some method. 

 

Then we know that the error involved in 𝑥∗ when compared to x is defined as 𝑥 − 𝑥∗ and it is 

denoted by 𝑒. Now remember you may also go for finding the 𝑙2 norm or 𝑙∞ norm or 𝑙1 norm 



of this error and then check whether this is less than. Say for instance 10−5 or any tolerance 

parameter that you specify. Say for instance you can give some ϵ value to your code. 

 

And every time once you finish the iteration you can check for the condition that the error 

involved in that iteration whether it is less than that ϵ or not, but unfortunately this cannot be 

implemented practically because to check this condition you need to know the exact solution. 
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There is another way of sensing this error that is using the residual vector. Residual vector is 

defined as 𝑟 = 𝑏 − 𝐴𝑥∗. You can see that if 𝑥∗ is very close to x then 𝐴𝑥∗ will be very close to 

Ax which is actually equal to b. Therefore, when 𝑥∗ is very close to the exact solution then r 

will be very close to 0, just like how if 𝑥∗ is very close to x then e will be very close to 0. 

 

Similarly, even r will go closer and closer to 0, if 𝑥∗ goes closer and closer to the exact solution. 

You can also see an interesting fact that r can be written as Ax because simply 𝐴𝑥 = 𝑏 − 𝐴𝑥∗ 

and since A is a linear transformation you can also write this as 𝐴(𝑥 − 𝑥∗) and therefore this 

can be written as 𝐴𝑒 = 𝑟. An interesting observation here is that the error e can be computed 

as a solution of this system. 

 

And therefore, you can compute e without knowing the exact solution. Remember if you want 

to use this formula to compute e you need to know the exact solution, whereas by computing e 

from this system you just do not need to know the exact solution. You can compute e from all 

the available information. Remember r is fully known to you because 𝑥∗ is known to you, b is 

known to you and A is also known to you. 



 

Therefore, r can be computed explicitly and then it can be plugged in as the right hand side 

vector and you can solve this system to get e without knowing the exact solution of your 

original system. 
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Coming back to the stopping criteria as I told, ultimately we would like to go for checking this 

norm to be less than ϵ, where ϵ is some pre-assigned positive quantity which is the tolerance 

of your error. But this is not practically applicable, because you just do not know this x or if 

you want to go for this condition then you may have to use this system. Solve this system to 

get e that may be equivalent to solving your original system itself. 
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An alternate idea is to compute the residual vector which can be computed directly from your 

approximate solution and then check for this condition. Say for instance in our code we could 

have computed this with a 𝑙2 norm and we could have checked whether that quantity is less 

than some number say 10−5 or whatever the tolerance number that you give. You can check 

this condition after computing each iteration. 

 

That is for each k once you finish the iteration for that particular k you can compute the residual 

error and then find the 𝑙2 norm of that residual error and check this condition. If that condition 

is satisfied you come out of the loop, otherwise you go for the next iteration. In that way you 

can get the solution as accurate as you want and you can stop the iteration as soon as you 

achieve your accuracy. 

 

So, this is one popular way to stop your iteration computationally. However, it has a danger 

that if you are working with a system where A is almost a singular matrix then you may have 

a very small residual error, but still you may be far away from the solution. Therefore, one has 

to be very careful in using this stopping criterion. However, if your A is a nice matrix then this 

is a good stopping criterion. With this node let us finish this lecture. Thank you for your 

attention. 


