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Hi, we are learning iterative methods for linear systems. In this, we have introduced two main 

iterative methods namely Jacobi method and Gauss-Seidel method. We have also learned the 

convergence theorems for these methods. In fact in the last class, we have proved the necessary 

and sufficient condition for the convergence of general iterative method written in a particular 

form and this condition depends on the spectral radius of the iterative matrix of the method. 

 

From this theorem we learned that if the spectral radius is very close to 1 but less than 1 then 

the corresponding iterative method may converge rather very slowly. We have also illustrated 

these phenomena in Jacobi method and in fact this can happen with Gauss-Seidel method also. 

In this lecture we will learn a slight modification of an iterative method through a relaxation 

technique. 

 

We will do this with Gauss-Seidel method and see how to accelerate the convergence speed of 

the Gauss-Seidel method. 
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Assume that we are given a linear system 𝐴𝑥 = 𝑏, where A is an 𝑛 × 𝑛, real matrix which is 

invertible and b is a given n-dimensional vector. Recall, that we can write the Gauss-Seidel 



iterative procedure to approximate the solution of the given linear system 𝐴𝑥 = 𝑏 and 

component wise the Gauss-Seidel formula is given like this, where 𝑥𝑖 is the ith component of 

the iterative vector 𝑥(𝑘+1). 

 

And k runs from 0 to infinity. For k equal to 0, we are given the initial condition 𝑥(0) and from 

there for each k = 0, 1, 2 and so on we can get 𝑥(1) and then 𝑥(2) and so on whose components 

are computed using this formula and this is the Gauss-Seidel method. In fact, we can write this 

method in the form 𝑥(𝑘+1) = 𝐵𝐺𝑥(𝑘) + 𝑐, where 𝐵𝐺 is the iterative matrix for the Gauss-Seidel 

method and c is a vector which is derived from the right-hand side vector i. 

 

We have seen that the Gauss-Seidel method will converge if and only if the spectral radius of 

the matrix 𝐵𝐺 is strictly less than 1. If the spectral radius is very close to 1 then the convergence 

will be very slow in the sense that the sequence may take many terms to achieve the required 

accuracy of the solution. 
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In such slow convergence situations, we are interested in looking for some way to accelerate 

the convergence. Say for instance, suppose we want the accuracy say our computed solution 

should be very close to the exact solution. In such a way that this error is less than say 10−5 

and suppose it takes 100 iterations that is k = 100 to achieve this accuracy. Then it may be 

computationally very costly especially when the matrix is very large in its dimension. 

 



That is n is a very large integer. In such cases we look forward to have some way to accelerate 

this convergence. That is achieve this accuracy but for some lesser value of k. Say for instance 

k = 20 or something like that then that will be very nice when compared to achieving the 

accuracy with large k. Now the question is; is it possible to somehow modify your original 

iteration in such a way that you can accelerate the convergence. I hope you understood what I 

meant by accelerating the convergence. 
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So, that is a nice idea what you do is just denote the Gauss-Seidel formula by z instead of x and 

now for a given non-zero real number omega we will now define our iterative sequence 𝑥(𝑘) 

component wise as 𝑥𝑖
(𝑘+1)

= (1 − 𝜔)𝑥𝑖
(𝑘)

+ 𝜔 into this expression. So, this is just a slight 

modification of the Gauss-Seidel method. We are introducing a parameter 𝜔 here and writing 

the iterative formula in this form. 

 

Now the question is what is the advantage of rewriting our original iterative formula in this 

form by introducing a parameter here? 
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Before answering this question let us just name this parameter 𝜔. In literature 𝜔 is called the 

relaxation factor. If 𝜔  is less than ,1 generally we call it as under relaxation and when 𝜔 is 

greater than 1, we call the method as the over-relaxation. You can observe that when 𝜔 = 1 

then this term goes off and you will have 𝑥𝑖
(𝑘+1)

 is just equal to 𝑧𝑖
(𝑘+1)

 and 𝑧𝑖
(𝑘+1)

 is precisely 

the Gauss-Seidel formula. 

 

Therefore, when 𝜔 = 1 our method just reduces to Gauss-Seidel method and in general we call 

this method as Successive Over Relaxation method. So, here the troublesome part is when the 

convergence is rather slow, so our purpose of introducing 𝜔 into this formula is to make the 

convergence little faster. In that way generally we call 𝜔 as a relaxation factor. 
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So, what we have done so far is, we have defined an iterative sequence in this way which is 

just an extrapolation of the Gauss-Seidel method in this way and it is called the Successive 

Over Relaxation method. Here we have to choose a 𝜔 and based on that 𝜔 we define the 

successive over-relaxation iteration process. In short, we generally call it as SOR. Therefore, 

for a given initial guess 𝑥(0) for every k first you will find 𝑧(𝑘+1). 

 

Plug in that here and then get 𝑥(𝑘+1). Once you have 𝑥(𝑘+1) then again you will repeat this 

process and in that way, you can generate a iterative sequence 𝑥(𝑘). Now our interest is to write 

this formula in the matrix notation. For that first what we will do is we will substitute this 

expression into the first equation. And get this equation for 𝑥(𝑘+1). Now let us rewrite this 

equation. 

 

For this we will first multiply both sides by 𝑎𝑖𝑖 and then take this term to the left hand side and 

write this expression in this form. Now you see it is more or less very clear. From here how to 

write this equation in the matrix notation because this is the formula for computing one 

particular component of the vector 𝑥(𝑘+1). 
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So, in order to write it in the matrix form first let us write A as the diagonal path of A plus the 

strictly lower triangular part of A plus strictly upper triangular part of A. Then you can see that 

this term is having the diagonal part, this term is having the strictly lower triangular path and 

you can see again this has the diagonal path and this has the strictly upper triangular path. Once 

you understand this it is more easy for us to write this expression in the matrix notation. 
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You have D, L. Again, you have D here and U. Therefore, you can combine these two and write 

D + 𝜔 L and now we are making everything as vector. Therefore, this is vector 𝑥(𝑘+1) =

[(1 − 𝜔)𝐷 − 𝜔𝑈]𝑥(𝑘) + 𝜔𝑏. So, that is the vector form of our successive over-relaxation 

method. You can now multiply both sides by (𝐷 + 𝜔𝐿)−1. 

 

And you can see that this equation now can be written in this form. If you recall in the last 

class, we have proved the necessary and sufficient condition for the convergence of any 

iterative method that can be written in the form 𝑥(𝑘+1) = 𝑇𝑥(𝑘) + 𝑐, where T is the general 

form of an iterative matrix. Now you can see that the SOR method is also written in this form 

with the iterative matrix as 𝑆𝜔 which is precisely 𝐷−1 + 𝐿 because we are now multiplying 

both sides of this equation by (𝐷 + 𝜔𝐿)−1. 

 

Therefore, 𝑆𝜔 = (𝐷 + 𝜔𝐿)−1[(1 − 𝜔)𝐷 − 𝜔𝑈]. That is what is the expression for the iterative 

matrix 𝑆𝜔 in the SOR method and the vector c is given by 𝜔 which is already there in this term 

into you are multiplying (𝐷 + 𝜔𝐿)−1. Therefore, that will come here into b which is already 

there in the term. So, this is how we can write the SOR iterative formula in the matrix notation. 
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Next our interest is to see how to choose the relaxation parameter 𝜔, so that the convergence 

of the sequence is accelerated. The idea is to look for the spectral radius of the iterative matrix 

𝑆𝜔 and try to make it as small as possible. That is the idea. The first theorem towards this is by 

Kahan.  

 

The theorem says that if you are working with the coefficient matrix A whose diagonal elements 

are non-zero. Then the spectral radius of the iterative matrix 𝑆𝜔 will be surely greater than or 

equal to |𝜔 − 1|. The proof of this theorem is very simple. So, let us prove it, go back to the 

expression of S, 𝑆𝜔 is given by the product of two matrices. This is one matrix and you have 

another matrix and 𝑆𝜔 is written as the product of these two matrices. Therefore, the 

determinant of 𝑆𝜔 can be determinant of this first matrix into the determinant of the other 

matrix. 

 

So, this is a very simple property of determinant and now once you have this look at the 

determinant of (𝐷 + 𝜔𝐿)−1. Since L is strictly lower triangular you can see that determinant 

of (𝐷 + 𝜔𝐿)−1 equal to determinant of 𝐷−1. Once you have this you can plug in this instead 

of this expression and then again use the property, the determinant of the product of two matrix 

is equal to the product of the determinants. 

 

So, once you use that you can write the resulting equation as determinant of 𝑆𝜔 equal to 

determinant of when you take this inside you can see that it becomes 1 – 𝜔. Remember now 

(𝐷 + 𝜔𝐿)−1 is nothing but 𝐷−1 when you take the determinant. So, when it goes inside you 



will have 1 − 𝜔𝐷−1𝐷 that becomes identity matrix −𝜔𝐷−1 that is coming here into U which 

is already there. Now let us try to understand how this will be when you are taking determinant. 
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Again, you use the fact that 𝐷−1𝑈 is the strictly upper triangular matrix. Therefore, you can 

join these two and look at the determinant of that matrix and that will happen to be simply 

determinant of 1 −𝜔 into the identity matrix. Therefore, the determinant of 𝑆𝜔 which is given 

like this is finally reduced to this. Now since the determinant of a diagonal matrix is simply the 

product of all the diagonal elements, you can see that this is precisely equal to (1 − 𝜔)𝑛.  

 

If you recall the definition of the spectral radius, you can see now that when determinant of 𝑆𝜔 

is given like this which is also the product of all the eigenvalues of 𝑆𝜔. You should keep this 

property of determinant also in mind and look at this you can immediately see that the spectral 

radius. 

 

Again, you have to recall the definition of spectral radius and keep in mind the determinant of 

a matrix is equal to the product of the eigenvalues of that matrix. You use these two conditions 

together to see that the 𝜌(𝑆𝜔) ≥ |1 − 𝜔|. Therefore, this property is proved. 
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Now what this property tells us? This property tells us that if SOR is converging, it means you 

have chosen your omega in the interval 0 to 2. That is what it says, because from the theorem 

that we have proved in the last class if you recall any iterative method that can be written in 

the form x(k+1) = 𝑇𝑥(𝑘) + 𝑐 will converge if and only if the spectral radius of this iterative 

matrix is strictly less than 1. 

 

And we have written SOR in this form and we have used the notation 𝑆𝜔 instead of T. 

Therefore, SOR iteration is converging means 𝜌(𝑆𝜔)  is less than 1, but theorem says that the 

spectral radius of 𝑆𝜔 is greater than or equal to 𝜔 − 1. You combine these two conditions and 

you can see that convergence of SOR iteration implies 𝜔 belongs to the open interval 0 to 2. 

Now what about the converse of this statement? 
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We cannot in general say anything about the converse of the statement. However, if A is a 

symmetric positive definite matrix and if 𝜔 belongs to the open interval  (0, 2) then you can 

say that the SOR iteration sequence will converge for any given initial guess 𝑥(0). The proof is 

little lengthy. Therefore, we will omit the proof. Interested students can learn the proof from 

this classical book. 

 

From these two theorems what we understand is when we are working with SOR method it is 

always important that we should choose 𝜔 in this interval, whether it will lead to a convergence 

sequence or not that we do not know. But definitely you cannot go away from this interval and 

choose an 𝜔 and hope that your sequence will converge. That is not possible. 

 

Rather you have to choose your 𝜔 in this interval but then whether the convergence will happen 

or not still you do not know it will depend on the spectral radius of 𝑆𝜔 for the chosen 𝜔. 
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Let us now define what is called optimal choice of 𝜔. For that let us first consider the set which 

we will denote as Ω and it is the set of all 𝜔s in the open interval (0, 2) such that the spectral 

radius of 𝑆𝜔 < 1. Let us call this as the admissible set because for all such 𝜔s in the Ω our 

corresponding SOR sequence will surely converge. 

 

Now what you do is, you take the spectral radius 𝑆𝜔 for all 𝜔 in the admissible set Ω and take 

the minimum of all these numbers. We will denote it by 𝜔∗ and call it as optimal parameter for 

the SOR iterative sequence. Why it is so, because for this choice of 𝜔 we will achieve the 

fastest convergence. That is why this parameter is called optimal parameter. 



 

Now the question is for any given matrix A can we compute 𝜔∗? It is in general very difficult 

to obtain 𝜔∗ but often one can just get this 𝜔∗ with few trial and error, it may be an 

approximation but sometimes it works dramatically well in terms of speed of convergence then 

the Gauss-Seidel method. 

(Refer Slide Time: 24:03) 

 

Let us take an example. Let us consider this system. If you recall we have already considered 

this system in our previous lectures. Let us take the Gauss-Seidel method. If you recall the 

iterative matrix for Gauss-Seidel method in this example is given like this and the Gauss-Seidel 

iterative sequence is given like this. You can immediately see that the spectral radius of the 

Gauss-Seidel iterative matrix is equal to 1. In fact, you can also directly see that this sequence 

will lead to an oscillating sequence. 

(Refer Slide Time: 24:51) 



 

Just to see this let us take the initial guess as (1, 1, 1) and apply the Gauss-Seidel iteration for 

this initial guess. You can see that the Gauss-Seidel iteration sequence will be an oscillating 

sequence and it will never converge. We have seen this behaviour in one of our previous 

lectures itself. Now let us see how we can choose 𝜔 and with that 𝜔 how the resulting SOR 

sequence will behave for this particular example. 
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You can immediately see that A can be written as the diagonal matrix D given like this plus the 

strictly lower triangular matrix L given like this plus the strictly upper triangular matrix U given 

like this. Once you have this, you can immediately form the iterative matrix for the SOR 

method for any non-zero 𝜔 and if you recall we have derived this matrix and its formula is 

given like this. 

 



For any 𝜔, now is restricted to 0 to 2 because we have seen that if you go away from this 

interval the SOR method will not converge. 

(Refer Slide Time: 26:35) 

 

With little difficulty you can explicitly write this matrix and it is given like this. Now you see 

if you want to get the spectral radius of 𝑆𝜔 as a function of 𝜔 you will have to find the 

eigenvalues of this matrix which itself will be very difficult. Remember you are only with 3 × 3 

system. For this itself the spectral radius expression will become very complicated. That is why 

we told that finding an optimal 𝜔 is in general very difficult. 

 

It may be possible for 2 × 2 case but even for 3 × 3 it becomes very difficult because you have 

to find all the eigenvalues of this matrix and then you have to take the modulus of that and then 

take the square root of that eigenvalues and take the maximum. And that will give you a 

function of 𝜔 and now you have to find the minimum of that function. So, that is theoretically 

very complicated. 
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Rather you can just compute the spectral radius numerically and you can plot it and see where 

the minimum of the spectral radius of 𝑆𝜔 is achieved as the function of 𝜔. Here I am plotting 

the graph of 𝜌(𝑆𝜔) where the x-axis represents the values of 𝜔 and the y-axis represents the 

values of 𝜌(𝑆𝜔) and the blue line is the graph of the function 𝜌(𝑆𝜔) and the optimal 𝜔 that is 

𝜔∗ is achieved at this point which is roughly 0.86. 

 

And also, you can see that if you take 𝜔 = 1 we get back our Gauss-Seidel method. And the 

spectral radius of Gauss-Seidel method as we have seen explicitly its value is 1. Now let us 

apply the SOR method with 𝜔 is equal to the optimal value 𝜔∗. 
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And see how the iteration goes on. As I told let us take 𝜔 is equal to the optimal value which 

is roughly 0.86. For this 𝜔 the spectral radius of the corresponding iterative matrix of the SOR 



method is around 0.21 which is pretty close to 0. Therefore, we expect a rather faster 

convergence in the SOR method for omega = 0.86. Let us see how the iterations go. We again 

take 𝑥(0) = (1,1,1) and see how the iteration goes. 

 

The first iteration is given like this and the 𝐿2 error involved in the first iteration is around 0.92 

and as we go on with the iterations you can see that the error falls down quite rapidly and within 

11 iterations we got a pretty accurate solution for our system. If you recall we have also 

computed Jacobi iteration for this system. And we have seen that after 200 iterations the error 

was around 0.00002 which means we captured the solution up to around 5 significant digits 

only after 200 iterations. 

 

Whereas, you can see that we captured the exact solution up to around 7 significant digits 

within 11 iterations using SOR method with omega = 0.86 which is the optimal value of 𝜔 in 

this particular example. Also recall that the Gauss-Seidel method gave an oscillating sequence 

and therefore it is not a convergent sequence at all. So, in that way SOR method with the proper 

choice of 𝜔 may often lead to a faster convergence. However, getting the optimal parameter 

𝜔∗ is in general very difficult. 
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However, in certain particular cases we can obtain the optimal value of 𝜔. For instance, if your 

matrix is a symmetric positive definite and tridiagonal matrix then the optimal relaxation 

parameter 𝜔∗ can be obtained using this formula. That is 𝜔∗ =
2

1+√1−𝜌(𝐵𝐽)
2
. Remember, this is 

the notation we used for the iterative matrix for Jacobi method. 



 

So, first you have to compute the Jacobi iterative method and find the spectral radius of that 

matrix. Once you have this you can get the optimal relaxation parameter for SOR method. If 

the given matrix is a symmetric positive definite and tridiagonal matrix and the formula is given 

like this. The proof of this theorem is very difficult, so we will omit it in our course. However, 

interested students can get the proof of this theorem from a classical book authored by J. M. 

Ortega. 
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Let us take an example, let us consider this 4 × 4 tri-diagonal system. You can see that this 

system is a symmetric and positive definite system. Let us try to find the optimal 𝜔 for the 

SOR method to this system. For that you first have to find 𝐵𝐽 and then obtain its spectral radius. 

How will you get? You have to find all the eigenvalues of this matrix 𝐵𝐽. Remember we have 

given the formula of 𝐵𝐽 in one of our previous lectures. 

 

You go back and see that formula then compute this matrix 𝐵𝐽 and then find all the eigenvalues 

of that matrix 𝐵𝐽 and from there you can get the spectral radius. Once you get the spectral radius 

you can simply use this formula to get the optimal value of the relaxation parameter and for 

this system the spectral radius of the Jacobi iterative matrix is given by 0.80902. And once you 

have this you can immediately get the optimal relaxation parameter using the formula given in 

our previous theorem and it is given by 1.25962. 

 



In fact from the explicit formula, you can clearly see that the optimal parameter in this case of 

the coefficient matrix will always lie in the interval 1 to 2. And the spectral radius is given by 

0.2596. That is again pretty small. Therefore, we expect a faster convergence again for this 

system when we use the SOR method with 𝜔 is equal to this. 
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Let us see the plot of the spectral radius of 𝑆𝜔 as a function of 𝜔. You can see that for any value 

of 𝜔 in the open interval (0 ,1) the spectral radius of the corresponding 𝑆𝜔 is strictly less than 

1. That means for any choice of 𝜔, SOR method will surely converges for this particular linear 

system and moreover you can also see that 𝜔∗ which we have computed using the formula 

given in the theorem is indeed the minimum of this function 𝜌(𝑆𝜔). 
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Again, we will start our initial guess with (1, 1, 1) and you can see that the convergence is 

pretty good and we got around 6 significant digits of the exact solution. Remember the exact 

solution is just the zero vector and we got the exact solution up to around 6 significant digits 

in just 12 iterations. 
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So, this is what finally we got in the SOR method when we took the 𝜔 as the optimal value of 

𝜔 which is 1.2596 around and the same when we take 𝜔 equal to 1 as you can see in this plot 

at 𝜔 = 1 this spectral radius is way below 1, it is around 6.5. Therefore, even Gauss-Seidel 

method will converge. But as you can see that the Gauss-Seidel method is converging rather 

slowly because its spectral radius is around 0.65, whereas the spectral radius of SOR with this 

parameter is around 0.25. 

 

Therefore, the SOR method converged quite faster that is in 12 iterations we got around 6 

significant digits accurately, whereas after 12 iterations you can see that the Gauss-Seidel 

method give around only 3 significant digits. And in fact, Gauss-Seidel method took around 

28 iterations to achieve the accuracy which is almost equivalent to the accuracy achieved by 

the SOR method. 

 

So, in this way we could accelerate the convergence of the Gauss-Seidel method quite 

efficiently by introducing a relaxation parameter into the sequence and we derived a resulting 

method called SOR method. With this let us finish this lecture and thank you for your attention. 


