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Hi, we are discussing iterative methods for linear systems. In this we have completed Jacobi 

method and Gauss-Seidel method. We have also learnt sufficient condition under which the 

iterative sequences generated by these two methods converge. In the last class we have also 

seen through an example that an iterative sequence may converge rather slowly or it may not 

even converge. 

 

In this lecture we will try to prove another theorem which gives us a necessary and sufficient 

condition under which an iterative method converges. This condition depends on the spectral 

radius of the iterative matrix of a method. In this we will consider a general form of the iterative 

method and we will prove this necessary and sufficient condition for a general iterative method. 
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For this we need a concept called spectral radius of a matrix. Let us first define this concept. 

Let A be a 𝑛 × 𝑛 matrix. The spectral radius of the matrix A is defined as the maximum of the 

absolute values of the eigenvalues of the matrix A and it is denoted by ρ(𝐴).  

 

Now that is an interesting result concerning this spectral radius which says that you give me 

any subordinate matrix norm, the norm of A with respect to that subordinate matrix norm will 



surely be greater than or equal to this spectral radius of the matrix A. Not only that you can also 

see that the spectral radius will be the greatest lower bound of the set of all subordinate matrix 

norm of A. Means what? You collect all possible subordinate matrix norms. This is a 

mathematical concept you cannot do this practically. 

 

Just mathematically speaking; take all subordinate matrix norm, find the value of this norm 

when it is applied to the matrix A, which is fixed for you. Then the spectral radius will be the 

greatest lower bound of that set. That is little difficult for us to prove. So, we will not get into 

the proof of that result. Anyway, we will not be using that; it is only an interesting result. 

Whereas, the result which is stated here is an interesting result and also it is easy to prove. 
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So, let us try to prove this lemma. You take any eigenvalue of A and a corresponding 

eigenvector of that eigenvalue. Let us make it unit vector and call it as v. Then you can write 

|λ| = |λ| ||𝑣||. Why we can write it because v we have taken as the unit vector. Therefore, ||𝑣|| 

will be equal to 1. Therefore, we can write like this. Now use one of the properties of the vector 

norm and push this modulus of lambda into the norm. 

 

And you can get ||λ𝑣||, you just go to the definition of vector norm, you can see that this is one 

of the properties of the vector norm. So, we are using that property. Now once you see λ𝑣, you 

can immediately write it as 𝐴𝑣, why? Because λ is the eigenvalue and v is the corresponding 

eigenvector of lambda. Therefore, you can write λ𝑣 as 𝐴𝑣. Now whenever you see this 

expression immediately one important property of the subordinate matrix norm should come 

in our mind. 



 

That is nothing but ||𝐴𝑣|| which is the vector norm is less than or equal to subordinate norm A 

into vector norm v. Again, you can see that vector norm v = 1 because v is a unit vector with 

respect to this norm. Therefore, this is equal to norm A. Now you see you have chosen this 

eigenvalue arbitrarily. Therefore, this inequality that |λ| ≤ ||𝐴||holds for any eigenvalue of A. 

  

In particular, it will also hold for that eigenvalue at which the maximum is achieved. That is, it 

also holds for the spectral radius of A. Spectral radius of A is nothing but the maximum of 

modulus of all such λs. Therefore, the spectral radius will also be less than or equal to norm A. 

So, that is what we understand and that is what we want to prove in this lemma also. This 

lemma gives us an encouraging message that if we use spectral radius in our analysis, we may 

get a better estimate for the error. So, that is what we are going to do. 
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Before that, what we will do is instead of considering Jacobi method or Gauss-Seidel method 

we will make our discussion a bit general and consider any iterative method which can be 

written in this form. Recall in the last class we have seen that Gauss-Seidel method can also be 

written in this matrix form as well as Jacobi method can also be written in this matrix form. 

 

Now just to make our discussion little general; we will consider any iterative method which 

can be written in this form. Therefore, in our discussion Jacobi and Gauss-Seidel can be taken 

as a particular case. Now let us state the important theorem which is the necessary and sufficient 

condition for convergence of any iterative sequence that can be written in this form. What the 

theorem says? You take any initial condition that is more important. 



 

You take any initial condition the sequence 𝑥(𝑛) generated using this formula converges to the 

solution 𝑥 = 𝐵𝑥 + 𝑐, why we are taking this as the system because if you recall we had 𝐴𝑥 =

𝑏. Generally, we will write this system in the equivalent form as 𝑥 = 𝐵𝑥 + 𝑐. Therefore, any 

solution of our original system will also be the solution of this system. That is how we generally 

derive the iterative methods. 

 

With that in mind, we say that this sequence converges to the solution of this system which in 

that sense is equivalent to the solution of our original system and the theorem says that this 

happens. That is, the convergence happens for any initial guess if and only if the spectral radius 

of the iterative matrix is less than 1. Remember the condition is imposed on the iterative matrix. 

 

Recall, in our previous two theorems the condition was imposed on the coefficient matrix. That 

is the coefficient matrix should be diagonally dominant. That is what the condition we imposed 

in our previous theorems, they are sufficient conditions. Now here, we are imposing condition 

on the iterative matrix. Often students make mistake of checking this condition that is ρ of the 

coefficient matrix is less than 1. 

 

That is not correct, you should not check this condition for the coefficient matrix but you should 

check this condition for the iterative matrix B. Now our interest is to prove this theorem, but to 

prove this theorem we need two important results from linear algebra. We will recall these 

results without proving them. 
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The first result is for any 𝑛 × 𝑛 matrix B, any matrix need not be an iterative matrix. This result 

is from linear algebra and it holds for any 𝑛 × 𝑛 matrix. Of course, for us everything is with 

real entries. The spectral radius of B is less than 1 if and only if 𝑙𝑖𝑚
𝑛→∞

𝐵𝑛 𝑥 = 0 and this should 

happen for every 𝑥 ∈ ℝ𝑛 and this is one result that we will be using in the proof of our theorem. 

 

And the next result says that if B is a 𝑛 × 𝑛 matrix and the spectral radius is less than 1 then 

(𝐼 − 𝐵)−1 exists and it can be written as 𝐼 + 𝐵 + 𝐵2  ⋯. This is a familiar result for us when B 

is a real number, but it also holds for matrices. That is what we are seeing here. You would 

have seen these results in linear algebra course. So, we will not prove these theorems here. But 

we will use them in our main theorem. 
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With these two results in mind, let us prove our main theorem. Let us first assume that the 

spectral radius of B is less than 1 and let us prove that the sequence 𝑥(𝑛) converges for any 

given initial guess 𝑥(0). How to prove this? Let us start with the expression for the iterative 

sequence which is given by 𝑥(𝑘+1) = 𝐵𝑥(𝑘) + 𝑐. Now you see this expression was used in 

computing 𝑥(𝑘) also. 

 

Therefore, the same expression can be applied to 𝑥(𝑘) by replacing 𝑥(𝑘+1) by 𝑥(𝑘). Then you 

will get instead of  𝑥(𝑘), you are just putting its expression from where it is computed and now 

with a simplification you can write this expression as 𝐵2𝑥(𝑘−1) plus, I am just clubbing these 

two terms and getting, (𝐵 + 𝐼)𝑐. Now once you have this again you can apply the same 

expression for 𝑥(𝑘−1). 
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In that way you can keep on going like this and till you hit the last step of 𝑥(0). At that stage 

you will have 𝐵𝑘+1𝑥(0) and the second term would have become the finite sum 

(𝐵𝑘 + 𝐵𝑘−1 + ⋯ + 𝐵 + 𝐼)𝑐. Now you see we have this nice form 𝑥(𝑘+1) is now given like this. 

Now you see we have scope to use our two lemmas that we stated before. How can you use 

them? 

 

For that you take  𝑙𝑖𝑚
𝑘→∞

 on both sides. Once you take this you can recall the first lemma since 

you have assumed that the spectral radius of B is less than 1 that lemma says that 𝑙𝑖𝑚
𝑘→∞

𝐵𝑘+1 𝑥 =

0 for any x. In particular whatever initial guess that you have chosen will also satisfy that 

condition. With that you can see that this term goes to 0. 

 

And the second term of course when you take limit k tends to infinity this finite sum will 

become a series like this. Now again you can use the second lemma which says that if the 

spectral radius of matrix i is less than 1 then this series converges and the limit of this series is 

nothing but (𝐼 − 𝐵)−1. 
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Now we will put these two lemmas into this expression. Remember this tends to 0 and this will 

be equal to (𝐼 − 𝐵)−1. Therefore, 𝑙𝑖𝑚
𝑘→∞

𝑥(𝑘+1) is equal to this. This is the limit of this sequence. 

So, limit exists, that is what we have seen using these two lemmas. Now what is this limit? Let 

us call this limit as x, then you can see that (𝐼 − 𝐵)𝑥 = 𝑐. That is nothing but 𝑥 = 𝐵𝑥 + 𝑐. 

 

This is precisely what we have demanded in the statement of our theorem. If you go back and 

see what we said is that the sequence should converge to the solution of this system and this is 

what now we are precisely seeing that the limit is nothing but the solution of this system. 
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So, that completes the proof that if the spectral radius of the iteration matrix B is less than 1 

then the corresponding iteration sequence will converge to a vector x which is the solution of 

the system 𝑥 = 𝐵𝑥 + 𝑐. 
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So, we finish the proof of one side. Let us now assume that the iterative sequence converges 

for any initial guess 𝑥(0). That is very important. The statement is that the sequence converges 

for any initial guess 𝑥(0) and this is the assumption and we have to prove that the spectral radius 

of B is less than 1. How to prove this? There are many ways to prove it. Let us take a simple 

approach. 

 

Assume the contrary that the spectral radius of B is greater than or equal to 1. That is, we are 

given that the iterative sequence is converging for any initial guess, but we are also assuming 

that the spectral radius is greater than or equal to 1. With this assumption we will now see that 

we can arrive at a contradiction. What is that contradiction? I will pick up one initial guess for 

which the corresponding iterative sequence is diverging. 

 

That is what I am going to prove. For that I have to choose a particular initial guess 

conveniently to make the sequence diverge. How am I going to choose this initial guess? I will 

choose my initial guess in such a way that 𝑥(0) that is my initial guess – x. Remember x is the 

exact solution of the system, 𝑥 = 𝐵𝑥 + 𝑐. This is a vector now. Now I will choose my initial 

guess in such a way that this vector is an eigenvector corresponding to which eigenvalue? 

 

The eigenvalue at which the maximum is achieved, that is nothing but that eigenvalue which 

came as the spectral radius of my iterative matrix. So, this can always be done, you are given 

eigenvalue. Then you can just take any eigenvector and then you can just write it in this form 



by conveniently choosing your vector 𝑥(0). You have freedom to choose 𝑥(0), but you have no 

freedom on x because it comes as the solution of your system. 

 

But you have freedom on 𝑥(0), so you can always choose such a vector. Now we will see how 

we are going to arrive at a contradiction. 
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Let us take this term; if you recall 𝑥(𝑘+1) is nothing but 𝐵𝑥(𝑘) + 𝑐. That is the way we have 

defined the iterative sequence. The same equation also holds for x. Therefore, x should be equal 

to 𝐵𝑥 + 𝑐. Now we are subtracting these two. Therefore, this will go off and you will have 

𝐵𝑋(𝑘) − 𝐵𝑥 that I can write as 𝐵(𝑥(𝑘) − 𝑥). Now the idea is something similar to what we did 

in the previous case. 

 

You apply the same expression for 𝑥(𝑘) and write this as 𝐵2(𝑥(𝑘−1) − 𝑥). Now, once you do 

that you keep on continuing this recursively until you hit the dead end where you have 

𝐵(𝑘+1)(𝑥(0) − 𝑥). Now what is this? This is nothing but the eigenvector. Therefore, you can 

write it as λ𝐼
𝑘+1 into the eigenvector. Again, this star should not be there it is a typo 𝑥(0) − 𝑥 

and you have this because this is a eigenvector. 

 

Now what we assumed as a contrary that λ𝐼 is greater than or equal to 1. That is what we have 

assumed. That is this is something greater than or equal to 1 rise to k + 1. If λ𝐼 = 1 then you can 

see that the right-hand side will never go to 0 as k tends to infinity, it will be a fixed number. 

On the other hand, if λ𝐼 is strictly greater than 1 then the right-hand side will go to infinity. 



 

And therefore, the left-hand side will also go to infinity. Remember in this derivation we only 

have equality, there is no inequality. Therefore, whatever happens on the right-hand side will 

surely happen to the left-hand side also. If it was less than or equal to then you cannot say that 

the left-hand side will go to infinity if right-hand side goes to infinity. But in this case, you can 

say because it is a equality. 
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That means that our assumption that λ𝐼 is greater than or equal to 1 made us to choose an initial 

guess for which the corresponding iterative sequence is not converging which is not correct as 

per our assumption that our iterative sequence always converges for any initial guess. 

Therefore, our assumption that the spectral radius of B is greater than or equal to 1 is not correct. 

 

That means the spectral radius of B should be always less than 1 if the iterative sequence is 

converging for any 𝑥(0). That is more important. For any 𝑥(0) if it converges that will surely 

imply that the spectral radius is less than 1 and this completes the proof of this important 

theorem. 
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Let us also have an important observation which we have already made in the case of the 

previous theorem on Jacobi and Gauss-Seidel method. You can see that if you are starting with 

the 𝑥(0) such that 𝑥(0) − 𝑥 is an eigenvector, again there is a typo here. Then this equality 

shows that if λ𝐼 is very close to 0 then the convergence is going to be faster. On the other hand, 

if the spectral radius that is in this case it is λ𝐼 is very close to 1 then the convergence is going 

to be very slow. 

 

You can see directly from here. As k tends to infinity the convergence is happening because 

this term is going to 0 as k tends to infinity if λ𝐼 which is nothing but your spectral radius is 

less than 1. If it is very close to 1 the convergence will be very slow. If it is very close to 0 then 

it goes much faster. So, that is what is a clear observation from here and in fact it holds for any 

choice of 𝑥(0) also. 
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With that note in mind, let us now see the example that we discussed in the last class and also 

at the beginning of this class. If you recall, we have considered this system which is not 

diagonally dominant, and not only that, you cannot exchange any of the rows to make it 

diagonally dominant. Then we have formulated the Jacobi method and Gauss-Seidel method 

and we have seen that Jacobi method was converging with the initial guess was taken as 𝑥(0) 

= (1, 1, 1). With that we have observed that Jacobi method was converging, but very slowly 

why it was so? 
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Now we can try to answer that. For that you have to take this matrix 𝐵𝐽 and find all its 

eigenvalues and then take the modulus of the eigenvalues. Let us say it is λ1, λ2, λ3. Then you 

take the modulus of all these eigenvalues and then take the maximum of all these numbers. In 

this case it happens to be 0.9444. Now go back to our previous observation. 



 

Your spectral radius of the Jacobi iteration sequence was pretty close to 1. So, that is why we 

witnessed that the convergence was pretty slow, also we have observed that the iterative 

sequence of Gauss-Seidel method was oscillating and never converged. Now by computing the 

spectral radius of 𝐵𝐺 you can also understand why it was happening like that. It was because 

the spectral radius of 𝐵𝐺, remember 𝐵𝐺 is the iterative sequence of the Gauss-Seidel method. 

 

And its spectral radius is 1. That may be the reason for why it was not converging but it was 

oscillating. From here you can see more clearly the behaviour of these two methods and also 

we can see that for a given system you may not always expect these methods to converge even 

convergence of one method may not imply the convergence of the other and also the sequences 

may converge very slowly. 

 

These are some of the disadvantages of iterative methods. Therefore, before applying these 

methods into your applications, you have to have an idea of whether these methods are going 

to converge; if so, how fast they will converge? For this all this analysis that we did in this 

section are very important. Like this in numerical analysis, doing analysis on methods will give 

us lot of ideas about how to use these methods more efficiently and what are all the limitations 

of these methods. With this node let us finish this lecture. Thank you for your attention. 


