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Well students this is the second lecture on our NPTEL course on Numerical Analysis. In this 

lecture, we will recall the Taylor’s theorem and how it can be used in approximating a function 

in a small neighborhood of a point. As the name suggest this concept was developed by Brook 

Taylor as a part of his work on astronomical refractions, but his work was not noticed by 

mathematicians for a longer time until J. L. Lagrange founded and commented that it is a very 

fundamental work in differential calculus. 
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Let us start our discussion with the definition of Taylor’s polynomial for a function at a point. 

Let us assume that the function f is n-times continuously differentiable at a given point say a. 

Then the Taylor polynomial of degree n for the function f at the point a is denoted by Tn and is 

defined as 

𝑇𝑛(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 +

𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3 + ⋯

+
𝑓(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 

So, that is what is written here and this is called the Taylor polynomial. Let us try to have a 

graphical idea about what is happening in this polynomial.  
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Let us take this function 𝑓(𝑥) = 𝑒𝑥 and we all know that is a very nice function. it is a real 

analytic function. In this graph the blue solid line is the graph of the function 𝑒𝑥 and let us take 

n = 0 and a = 0 that is we want the polynomial of degree 0 for the function 𝑓(𝑥) = 𝑒𝑥 around 

the point a = 0. Obviously, it will be the constant and you can see what is that constant by 

putting n = 0 in the Taylor polynomial.  

 

You can see that 𝑇0(𝑥) = 1. This red line is the graphical representation of this zeroth degree 

polynomial 𝑇0(𝑥) = 1. You can see that the polynomial agrees with the function only at the 

point a = 0. Well, let us increase the degree of the Taylor polynomial and see what is going to 

happen. Let us take n = 1 that is we want a linear polynomial around the point a = 0. Now it is 

a straight line given by 1 + x and its graph is shown in the red line in this graph and as usual 

blue line is the graph of the function 𝑒𝑥. Now, you can see that well the polynomial agrees 

exactly with the function value at x = 0 and also at least graphically we can see that this 

polynomial is approximating the exact function in a rather very small interval around 0.  

 

What it means that suppose I want to find the value of the function 𝑒𝑥 say at some point here. 

Then instead of taking the value from the exponential function if I take the value from this 

polynomial then the value seems to be pretty close to the exact value at least graphically rather 

than I go somewhere here and try to find the value of say x = - 0.5 then if I use the polynomial 

its value may be very much different from the exact function of the function at the point x = - 

0.5.  

 



So, to summarize from the zeroth degree polynomial when we came to the linear polynomial 

we see that we got a small interval in which we may have a better approximation to our function 

through the Taylor polynomial. 
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Let us increase the degree by one more and see what is happening. For n = 2 now and as usual 

a = 0 the graph of the quadratic Taylor polynomial is shown in this red colour and blue line is 

as usual 𝑦 = 𝑓(𝑥). Now you can see at least graphically that the Taylor polynomial is 

approximating the exact function in a little bigger neighborhood of 0 then what we got in the 

linear case.  

 

So, that means to say that now if I have some point say somewhere here then if I compute the 

value from the polynomial and the value from the original function 𝑓(𝑥) = 𝑒𝑥  the difference 

may be very small that is what I mean by saying that the polynomial is approximating the 

function pretty well in a rather little bigger neighborhood than what we got in the linear case.  
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With that idea let me go on with the cubic Taylor polynomial you can see that the 

approximation is rather good in a bigger neighborhood. Now, I can say that the Taylor 

polynomial is approximating the function rather in a bigger interval say roughly from – 0.6 to 

+ 0.6.  
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Similarly, if I go for the 4th degree polynomial, it is much more better and so on. So, in this 

nice function you can see that by increasing the degree of the Taylor polynomial we are getting 

better approximation of the function by the polynomial in a bigger and bigger neighborhood of 

the point a which is taken in this particular example as 0. So, this is the purpose of Taylor 

polynomial. 

 



Now the question is, suppose I want to approximate the function f of x by its Taylor polynomial 

of degree say n. Now the question is what is the error involved in it? It means what is this 

number 𝑓(𝑥) − 𝑇𝑛(𝑥) for any x in a small neighborhood of the point a say (𝑎 − δ, 𝑎 + δ) 

something like a = 0 in our case. So, I want to approximate my function f by the Taylor 

polynomial in a small neighborhood. If I do so, how this quantity will look like that is the 

question.  
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So, for this we can go to the Taylor’s Theorem and see how this error will at least look like. 

Let f be a n + 1 times continuously differentiable function on a open interval containing both 

the points a and the point x at which we want to find the approximate value of the function f. 

Now the Taylor’s Theorem says that you can find a ξ between the points a and x such that you 

can write 𝑓(𝑥) is equal to the Taylor polynomial plus the error.  

 

Remember we were interested in understanding how this quantity will look like. Now Taylor 

says that quantity will look like this expression. Unfortunately, this ξ is a unknown quantity 

that is quite natural to expect because if you know this ξ then what it means? It means you can 

represent any sufficiently smooth function by the Taylor’s polynomial and whatever you lose 

as an approximation that can be precisely quantified if you know this ξ that looks really too 

much to expect. 

 

Therefore, ξ has to be something which is unknown that is what is also coming from this 

theorem. If you go through the proof of this theorem you will see that this ξ is coming through 

applying Rolle's Theorem several times. If you back to Rolle's Theorem and see the proof of 



the Rolle's Theorem is not constructive, it is something conceptual. Therefore, you just cannot 

quantify this ξ anywhere in this formula.  

 

As we have already told 𝑇𝑛 is the Taylor polynomial of degree n and the second term that is 

the error term which we will also call as truncation error, I will precisely define it later, but in 

calculus we call it as remainder term. Well, I will not prove this theorem however we have 

given the proof of this theorem in our notes. Interested students can go through it. In fact, I will 

suggest you to go through the proof of this theorem because the idea involved in this theorem 

is also used in some sense in getting the proof of the error in polynomial interpolations. 

 

Therefore, this proof is definitely very helpful for us and it is also important for us to at least 

once understand in our life so that we know how such important theorems are true.  
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Okay, let us take an example the remainder theorem of the Taylor’s formula for the function 

𝑓(𝑥) = 𝑒𝑥 around the point a = 0 is given by this. Why it is so? Because you have 

𝑓(𝑛+1)(ξ)

(𝑛+1)!
(𝑥 − 𝑎)(𝑛+1), that is the formula. Here we have taken n = 4 and a = 0 where 𝑓(𝑥) =

𝑒(𝑥). Therefore the remainder formula is 𝑒ξ divided by n + 1 which is 5! into (𝑥 − 0) to the 

power of 5 so that is how it is coming.  

 

What is ξ? You should always remember to write what is ξ? ξ is some unknown lying between 

x the point at which we want to find the approximate value of the function f and the point 0 

which is kept as the point in the Taylor’s formula. By the way the formula given in the Taylor’s 



Theorem, that is this formula, is called the Taylor’s formula in general. So, the Taylor’s 

Theorem says that 𝑒𝑥 can be written as the 4th degree polynomial of 𝑒𝑥 that is the Taylor 

polynomial of 𝑒𝑥 plus the corresponding remainder term.  

 

If you recall the Taylor polynomial of degree 4 for the function 𝑒𝑥 is given by this and the 

remainder term we have already seen that is this. So, this two combined will give you the value 

of the exponential function at a point x. Unfortunately, this term although we know the 

expression, but its precise value is not known for any given f because this ξ  is not known to us 

so that is the main problem of this approximation. Just to have a feeling let us take x = 1.  

 

The 4th degree polynomial at the point 1 gives 2.7083 and so on whereas the exact value is 

something like 2.7183 so on. So, therefore you can precisely get the error involved in the Taylor 

polynomial when compared to the exact polynomial in this particular case and that is around 

0.01. Of course, this is precisely known because we have fixed our x here as 1. In general, for 

a given x we do not know how it will look.  

 

If you precisely give x then possibly you can compute provided you know how to compute the 

exponential function, but as a general case this is not known to us then you may ask then what 

is the point of having this remainder term. Well, we have at least some idea of how that error 

will look like and in certain cases you can also find an estimate for this error. What is meant 

by estimate of the error let me just give you an idea of it in this particular example.  

 

Assume that I want to find approximate value of the function 𝑒𝑥 at some point x less than 1 

whatever x I will choose that will be something less than 1. If that is so then what you can do 

is you take the modules on both sides of this remainder and that is going to be modules 
𝑒5

5!
𝑥5. 

Now what I meant by estimating this error? 

 

It means I want to find a fixed number I do not want the upper bound to involve anything which 

is unknown or something which is a variable. Now what I will do is I will use the fact that 

exponential function is a monotonically increasing function. Therefore, its maximum is 

actually achieved at x = 1. Therefore, for any given x whatever may be the value of x you have 

some ξ which unfortunately I do not know. 

 



But however what I can say is whatever may be that ξ, it will be surely less than or equal to e 

that is what I will say and then divided by 5! and again x is going to be something less than 1, 

but here I can say that x5 is surely going to be less than 1 because I know precisely how I am 

going to choose my x. Therefore, with all these ideas I can say roughly that this quantity 

whatever it is which is we do not know will be surely less than or equal to e1 divided by 5! that 

is approximately 0.0227.  

 

So, that is what is finally we meant by estimate. So, whenever we give a function and ask you 

to write a Taylor polynomial of degree something some n we will give and also we will give 

some value for a and then ask you to write the Taylor polynomial for that function then you 

know how to write because you have the formula and you can also write the remainder term 

for that. 

 

And if you want to estimate it then somehow you have to get a upper bound for the remainder 

quantity which does not involve any unknown or any variable it should be a fixed number that 

is what we meant by estimates.  
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Well as I told you at the Taylor’s Theorem the remainder term is called the truncation error 

involved in the Taylor polynomial when compared to the exact function. Often we use this 

word truncation error in our course.  
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Let us see how Taylor’s Theorem is used generally. You are given a real number a and you are 

also given a real number h let us try to visualize it. You are given a and you are given small 

number h greater than 0 or even less than 0 if it is greater than 0 a + h will come this side if it 

is less than 0, a + h will come this side either it is greater than 0 or less than 0 anything is okay. 

 

And now we are also given an integer n and all this information are given to us. Practically this 

is too much to expect, however as far as this approximation procedure is concerned, we have 

to know all this information that is 𝑓(𝑎), 𝑓′(𝑎) and so on up to 𝑓(𝑛)(𝑎). Once you know all 

this information then the question is what will be the value of f at the point a + h that is you are 

given information about what is 𝑓(𝑎) and similarly what is 𝑓′(𝑎) and so on up till 𝑓(𝑛)(𝑎) and 

you now want to know what is the value at a + h, say. 

 

Suppose, this is the function, you know all the information like this at this point only you do 

not know at any other point. Now I want to know what is the value of 𝑓(𝑎 + ℎ) that is precisely 

what your Taylor’s Theorem is going to tell you now. The Taylor’s Theorem says that I can 

write 𝑓(𝑎 + ℎ) as this is the Taylor’s polynomial. So, if I do not write the truncation error here, 

if I do not write that, then I should put approximately equal to. 

 

So, you should remember this notation is very important whenever you are writing this, this is 

the exact value that you want to compute unfortunately we do not know this. So, we are going 

to find an approximate value of that by evaluating the value of the corresponding Taylor’s 

polynomial at the point a + h that turns out to be this. Remember, if you want to find the 

Taylor’s polynomial at x it involves x – a. 



 

So, now our x is a + h therefore a + h – a is h that is why h is sitting here then x – a the whole 

square therefore this and so on that is why h is sitting here. So, this is the way we will use 

Taylor’s Theorem in approximating values of function by the value of the corresponding 

Taylor’s polynomial and the error involved is the truncation error which is also called the 

remainder.  
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So, as I told you how to estimate the truncation error let us again assume that f is n + 1 times 

continuously differentiable and assume that you are working in a closed and bounded interval. 

Say, I do not want to use a, b because a is already reserved for the point around which we want 

to approximate the function. Therefore, I just used 𝛼, 𝛽. So, since f is n + 1 times continuously 

differentiable, therefore, 𝑓(𝑛+1) is a continuous function on a closed and bounded interval 

therefore you can find a constant such that |𝑓(𝑛+1)(𝜉)| ≤ 𝑀𝑛+1, that is the constant I am 

assuming, then what you can do recall this is the general formula for remainder term which 

also is called truncation error. Now you see this can be dominated by 𝑀𝑛+1. Remember, by 

estimate we mean to have an upper bound which is just a number which does not involve any 

unknown or any variable.  

 

Here ξ is a unknown and x is a variable of course if you change x this ξ also will vary. So, we 

have to somehow eliminate these two members. a is not a variable or unknown it is known to 

us. So, therefore we have to somehow eliminate these two. We can eliminate ξ  by dominating 

this term by the constant M and you can dominate x by β because whatever is the value of x it 

is going to lie between α and β.  



 

Therefore, x will utmost take the value β. Therefore, we will replace this by β and this entire 

term we will replace by M. So, that will give us an estimate of the truncation error and that is 

given by 
𝑀𝑛+1

(𝑛+1)!
 into this one and that further I will eliminate by putting β instead of x that is the 

way we can get the truncation error estimate.  
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Now let us pause on to what is meant by Taylor series? You are given a 𝑐∞ function f then the 

power series given by this around a point a around which your function is a 𝐶∞ function is 

called the Taylor’s series. Now the question is, if the series converges then what is the limit of 

this series. Well, under certain conditions on f we can say that the limit of this series is equal 

to 𝑓(𝑥).  

 

Well, these conditions are listed in the form of a theorem in our notes, but just to keep our 

discussion simple, let us assume that f is a real analytic function then of course by definition 

𝑓(𝑥) can be represented by the Taylor series. Of course, we know this from our calculus course.  
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Let us take an example, 𝑓(𝑥) is equal to 𝑐𝑜𝑠 𝑥. We know that the Taylor series at a point 𝑥 = 𝑎 

for the function 𝑐𝑜𝑠 𝑥 is given by this. Now, let me take in particular a = 0 then this series 

reduces to 1 −
𝑥2

2
 and so on. Remember all the terms with  𝑠𝑖𝑛 will vanish that is why we do 

not see the odd powers here only even power survive and therefore we can write the series for 

cos like this. So, why am I telling this we all know this.  
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Now coming back to Taylor formula at a = 0, n = 4 for the cos function can be taken like this. 

Now I am putting approximately equal to because I am not writing the truncation error or the 

remainder term here. Therefore, I have to put the approximately equal to symbol here and what 

I am losing in this approximation is precisely given by this expression. However, its value is 

not known to us precisely. 

 



But the expression is known to us like this where the ξ which is the unknown lies between 0 

and x. So, here what I would like to highlight is generally you may write the remainder term 

just going by the Taylor’s Theorem maybe written with 𝑥5 term, but what we are taking as a 

remainder term is 𝑥6 term. Why we are doing it because that is the immediate next term in your 

series and therefore that dominates your truncated part.  

 

What is that you are truncating 𝑥6 divided by something plus 𝑥8 divided by something and so 

on. So, what we are truncating is this part and the leading term of that part is 𝑥6. Therefore, we 

actually has to take this as the remainder term and not with 𝑥5.  This one has to remember why 

we are doing this? Well, when we do the order of convergence at that time we will come and 

revisit this problem. And tell why we prefer to take this term as the remainder term and not the 

1 with 𝑥5 which actually your Taylor’s Theorem may suggest. So, in that way your Taylor 

approximation for cos function maybe written like this where the index goes from 0 to m with 

2 into k here and the remainder is immediately taken at the m + 1th stage. So, this is something 

that you have to keep in mind when you are writing the remainder term for cos x similarly for 

sin x also.  

 

Okay with this our discussion on Taylor approximation is over. We will meet you in the next 

class. Thank you.  


