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Hi, we are learning iterative methods for linear systems. In this topic in the last class, we have 

learned Jacobi method and a sufficient condition for the convergence of Jacobi iteration 

sequence. In this class we will study Gauss-Seidel method. 
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This method is named after 2 German mathematicians called Friedrich Gauss and Philipp 

Ludwig von Seidel. Von Seidel was an assistant to Jacobi and it is widely believed that Gauss 

knew these 2 methods that is what we now learn as Jacobi method and Gauss-Seidel method 

previously itself, but many of Gauss work were not communicated. Therefore, it was not known 

to the mathematical community until Jacobi and Gauss-Seidel discovered these methods 

independently. 
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With these short historical notes, let us now start learning the Gauss-Seidel method. Gauss 

Gauss-Seidel method is a modified version of the Jacobi method. Let us quickly recall the 

Jacobi method and see how we modify this Jacobi method to get the Gauss-Seidel method. Let 

us again consider only the 3 × 3 system, because once we understand this generalizing it to 

any 𝑛 × 𝑛 system is not difficult. 

 

So, if you recall we are given a linear system 𝐴𝑥 = 𝑏, what we do is we keep the diagonal 

terms on the left-hand side and push all the non-diagonal terms on the right-hand side and then 

we divide both sides by the diagonal element 𝑎𝑖𝑖. Of course, we have to assume that 𝑎𝑖𝑖’s should 

be non-zero. Then we get an equivalent system like this. You can immediately note that any 

solution to this system will also be a solution to this system. It means these 2 systems are 

equivalent. 
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With this observation, now what we will do is we will choose a vector arbitrarily and name it 

as 𝑥(0) and plug in that on the right-hand side of the equivalent system and get a new vector 

which we will name as 𝑥1. Again, you plug in 𝑥1 on the right-hand side to get 𝑥2  and the 

iteration process goes on like this. In general Jacobi iteration is given like this. One can also 

write it in the matrix notation which we have done in the last class.  

 

Now once we understood the Jacobi method let us come to the Gauss-Seidel method and see 

what is the modification that is done in order to get this new method. The idea is rather very 

nice; you look at the first equation. When you are computing 𝑥1, you only know 𝑥2 and 𝑥3 from 

the previous iteration. Therefore, you are substituting the values from the previous iteration. 

Now when you go to calculate 𝑥2 you can see that the value of 𝑥1 now is known as a recent 

one. 

 

We do not know whether it is going to be better than the previous iteration as far as the exact 

solution is concerned or not. However, what we see is that we have a latest computed version 

of 𝑥1 at the time of computing 𝑥2. Therefore, the idea is why not we will put 𝑥1
(𝑘+1)

 here instead 

of the old information. That is the idea. Of course, 𝑥3 is not known to us because we have not 

yet computed it. 

 

Therefore, we will again borrow this value from the previous iteration. However, this value 

that is the value of 𝑥1 will be put from the present iteration. Similarly, when you go to compute  

𝑥3 at that time both 𝑥1 as well as 𝑥2 are holding a rather latest information that is the value than 



what is coming from your previous iteration. Therefore, why not we put 𝑥1
(𝑘+1)

 and 𝑥2
(𝑘+1)

 

instead of the values from the previous iteration. So, that is the idea of Gauss-Seidel method. 
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Therefore Gauss-Seidel method is defined as 𝑥1 is equal to all the terms where these unknowns 

are replaced by the values from the previous iteration. When you come to 𝑥2 this term is taken 

from the present iteration and 𝑥3 is taken from the previous iteration and for the coordinate 𝑥3 

you take both the terms from the present iteration. In a sense what we are doing is you have 

𝑥𝑖
(𝑘+1)

= 𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 and so on 𝑎𝑖𝑖𝑥𝑖 + 𝑎𝑖,𝑖+1𝑥𝑖+1 up to 𝑎𝑖𝑛𝑥𝑛. 

 

Here, when you are computing the ith coordinate all the terms below the diagonal term or 

known from the present iteration. Whereas, all the terms which are on the other side of the 

diagonal term is going to be known from the previous iteration only. Whereas the diagonal 

term is not appearing on the right-hand side, because it is kept here and then you are dividing 

everything by 
1

𝑎𝑖𝑖
. 

 

And there is one more term which is actually coming as −𝑏𝑖, minus of these things. So, that is 

how we are getting. What is important here is we are now splitting the terms which are in the 

lower side of the diagonal element and the upper side of the diagonal element. The lower sides 

of the diagonal element are substituted with the value of the coordinate from the present 

iteration. 

 



Whereas the terms which are on the right side that is upper side of the diagonal element are 

substituted with the values from the previous iteration. So, that is the main idea of the Gauss-

Seidel method. 
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I hope you have understood the Gauss-Seidel method. 
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Let us now ask the question when does the sequence generated by the Gauss-Seidel method 

converge? Again, the idea is more or less similar to the Jacobi method. We can see that if the 

coefficient matrix A is diagonally dominant then the iteration sequence generated by the Gauss-

Seidel method will always converge with respective to whatever may be the initial guess that 

we take. 

 



Let us try to prove this theorem now. Again, we will follow the ideas that were introduced in 

the convergence theorem of the Jacobi method; what we do is we will try to write the error 

component-wise and then try to estimate it. For that we will first write the Gauss-Seidel method 

component wise as I explained the ith term is written with a split of the terms which are on the 

lower side of the diagonal element and the terms on the upper side of the diagonal element. 

 

The lower side we are putting k + 1 and the other side of the terms are taken from the previous 

iteration. So, this is precisely what we have defined as Gauss-Seidel method. Now you can see 

that the same will also be satisfied by the exact solution. That is, if you take the ith component 

of the exact solution that can also be written as 𝑥𝑖 =
1

𝑎𝑖𝑖
 into 𝑏𝑖 minus this term with 𝑥𝑗 minus 

the same term with 𝑥𝑗 again. 

 

Only thing is, j runs from 1 to i - 1 here and it will run from j = i + 1 to n. Now in order to get 

the ith component of the error involved in the k + 1 iteration what you have to do? You have 

to subtract these 2 equations; you have to subtract this and this. Again, as we did in the Jacobi 

method you can see that 𝑏𝑖 will get canceled and 𝑥𝑗 − 𝑥𝑗
(𝑘+1)

 will give you 𝑒𝑗
(𝑘+1)

 and similarly 

here it will give 𝑒𝑗
(𝑘)

 and the coefficient here. So, that is what we will get. 
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When we subtract these two 𝑒𝑖
(𝑘+1)

, b went off. Therefore, we are left out with this terms where 

𝑥 − 𝑥𝑗
(𝑘+1)

 is 𝑒𝑗
(𝑘+1)

 and 𝑥𝑗
(𝑘)

 is now 𝑒𝑗
(𝑘)

 because we are subtracting 𝑥𝑖 − 𝑥𝑖
(𝑘+1)

. Now we have 

this expression for the error. Note that in Jacobi method, the only difference is these terms are 



combined together with the superscript k, whereas here these terms are split into 2 parts. The 

left part is with k + 1 and the right path is with k. That is the only difference in the Gauss-Seidel 

method. 
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Now what we do? We will define this term as α, of course we are taking modulus because we 

are going to take modulus on the both sides in the next step. Therefore, we give a notation for 

the modulus of this term as α𝑖 and modulus of this term as β𝑖. Here you can see that when i = 

1 the sum goes from j = 1 to i – 1. It means when i = 1 it goes from 1 to 0 which is not looking 

nice. 

 

Therefore, what we will do is, we will just define the case i = 1 for α as 0 separately. Similarly, 

the same problem will come for β when i = n. In that case j will run from n + 1 to n which does 

not look nice. Therefore, we will separately define β𝑛 as 0. So, this is just a notational 

convention that we will keep in mind when we are defining these terms. So, these are some 

notations we have taken. 

 

Now what we will do? We will take modulus on both sides of this equation and then when we 

push the modulus into this sum. We will get a less than or equal to sign and then what I will do 

as we did in the previous theorem on Jacobi method we will dominate each of these errors by 

their infinite norm. 
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Then what we will get? We will get, remember we are taking modulus of this equation and that 

gives me mod 𝑒𝑖
(𝑘+1)

 less than or equal to; when I take modulus here and take that modulus 

inside this sum, I have α𝑖 for this term that I have taken here. Similarly, β𝑖 for this term I have 

taken and I have mod 𝑒𝑗
(𝑘+1)

. What I will do is, I will replace each of this term by their 

maximum. That is what we call as ||𝑒(𝑘+1)||∞ and that is what is sitting here. 

 

Similarly, the same thing we will do for the second term also and that is what is sitting here as 

the infinite norm; therefore, this less than or equal to is coming from two steps. One is when 

you take this modulus inside this sum and another one is when you replace |𝑒𝑗+1| and |𝑒𝑗
(𝑘)

| by 

their respective infinite norms. You get this less than or equal to sign. Remember this inequality 

is satisfied by 𝑒𝑖 for each i = 1, 2 up to n, it means all the coordinates of the error vector 𝑒(𝑘+1) 

will satisfy this inequality. 
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Therefore, it will also be satisfied by that coordinate where the infinite norm of 𝑒(𝑘+1) is 

achieved. Say the infinite norm of 𝑒(𝑘+1) is achieved at say some lth coordinate where l is 

something lying between 1 to n. Then since this inequality is satisfied by all such i's it will also 

satisfy for that l at which this maximum norm is achieved. Therefore, for that coordinate you 

will have 𝑒𝑙
(𝑘+1)

is less than equal to α𝑙||𝑒(𝑘+1)||∞+ β𝑙||𝑒
(𝑘)||∞. 
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So, that is what I will write here 𝑒𝑙
(𝑘+1)

 that is nothing but the infinite norm of the vector 𝑒(𝑘+1) 

is less than or equal to α𝑙||𝑒
(𝑘+1)||∞+ β𝑙||𝑒

(𝑘)||∞. So, let us keep this inequality in hand and 

just have a small observation. 
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The observation is the following. We have so far derived this inequality and now let us have 

this observation. If you recall the μ which is given here is familiar to us from the convergence 

theorem of Jacobi method also. If you recall when we were proving the convergence theorem 

of Jacobi method we have defined this μ. Now you can see that the same μ is nothing but 

maximum of α𝑖 + β𝑖, why? 

 

Because in the definition of μ we are removing the diagonal element and we have j going from 

1 to i - 1 then i is removed then you are going from i + 1 to n. That is precisely how we defined 

α𝑖 and β𝑖 's. Therefore, taking maximum on this entire sum is equivalent to taking maximum 

on the sum of α𝑖 's and β𝑖 's. So, at this level we have not done anything new, it is just similar to 

what we did with the Jacobi method. 

 

Only thing is we are now considering the terms at the left of the diagonal and those terms on 

the right of the diagonal are treated separately. That is the only difference here. 
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Now you see we have assumed that A is diagonally dominant and from the direct observation 

you can see that diagonal dominance of A implies that μ is less than 1. This we have explained 

in the last class itself, why diagonal dominance of A implies μ less than 1? It comes directly 

from the definition; if you carefully look into this expression and see the definition of diagonal 

dominance you will immediately see that μ should be less than 1. 

 

Now μ is less than 1 and μ is nothing but the sum of α’s and β’s. Therefore, just α𝑖 's alone you 

take they all will be less than 1. In particular this α𝑙 will also be less than 1. That is the important 

observation that we are getting. Here from the hypothesis that A is diagonally dominant. Now 

what we will do is we will take this term to the left-hand side what you will get is 1 - α𝑙 you 

will get. 

 

This goes off and then you have this. Then you bring this term to the right-hand side again and 

write 1 - α𝑙. Now I can do that because 1 - α𝑙 is positive, why it is because just now we saw 

that α is less than 1. Therefore 1 – α is positive. 
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Therefore, you can divide both sides by 1 - α to get ||𝑒(𝑘+1)||∞ ≤
β𝑙

1−α𝑙
||𝑒(𝑘)||∞. So, this is 

much more nice for us because all the 𝑒(𝑘+1)’s are kept on the left hand side and we have all 

𝑒(𝑘)’s on the right hand side. Now let us try to understand how this number behaves that is 

what is our aim now. 
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For that first we will remove the dependency of this number on a particular coordinate because 

in any estimate we want some fixed number it should not depend on anything which may vary; 

here l may be anything between i = 1 to n. So, let us dominate it by something very specific. 

For that we will take maximum on all the coordinates of this expression. Because such a 

expression is possible for each i, β𝑖, 1 – α, all are positive numbers because β is positive, all 

α𝑖 's are less than 1. 



 

Therefore, 1 - α𝑖 is also positive for each i = 1, 2 up to n. Therefore, when we take maximum 

of all that that number will also be a positive number and what we will do is, we will now 

dominate this term by η and therefore we will have||𝑒(𝑘+1)||∞ ≤ η||𝑒(𝑘)||∞. That is what we 

finally got. So, this is much more nice than this because we have a nice estimate on this. 

 

Now you see the question is what about this η? Because we can now recursively write it like 

this η2||𝑒(𝑘−1)||∞, the same idea that we always put to get a nice estimate finally is k + 1 times 

||𝑒(0)||∞. Why this is nice because we already chosen 𝑥(0) and therefore this term is something 

which is fixed. We have chosen this and x is something which we may not know but it is already 

given to us and this is fixed quantity that is more important. 

 

Now we have to only see that η𝑘+1 should go to 0 as k tends to infinity. For that we have to see 

whether η is less than 1 or not, it is not very clear from the way it is defined and the condition 

that A is a diagonally dominant matrix. But it is not very difficult to see. 
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Let us take this expression. If you recall this expression is what finally led to μ after taking 

maximum and this is the expression which gave us η after taking maximum? So, let us take 

this as μ𝑖, η𝑖 and you see how this is going to be. For that we can just simplify this expression. 

After simplification you can get this expression to be 
α𝑖(1−(α𝑖+β𝑖))

1−α𝑖
. 

 



Now, this I can dominate by μ from the lower side because there is a negative sign here. 

Therefore, this term will be greater than or equal to the same expression with this replaced by 

mu. Now you can see that this is positive and also this is positive because of the diagonal 

dominance property of A which says that μ is strictly less than 1. Therefore, this is also positive. 

Therefore, both are going to be positive and that shows that μ𝑖 which is this expression, η𝑖 This 

minus this is greater than or equal to 0, it means this is greater than or equal to this. 
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Now what we have proved is we have shown that η𝑖 is less than or equal to μ𝑖, from here is 

greater than or equal to 0. Now this is true for all i = 1 to n. In particular for that component 

where the maximum was achieved also will satisfy this. Therefore, I can as well write it as η𝑖 's 

are less than or equal to μ. Remember μ is nothing but the maximum of all these expressions. 

 

Now again this is true for all i. Therefore, for that i for which η attains its maximum also will 

satisfy this equation. Therefore, we can write η is less than equal to μ. That is what I have 

written and we already know that μ is less than 1. Therefore, η is less than 1. Therefore, this is 

less than or equal to up to η𝑘+1||𝑒(0)||∞. Now you know how to conclude that the sequence 𝑥𝑛 

converges to x because we know that this is less than 1 and therefore this term goes to 0 as k 

tends to infinity. 

 

This is a fixed term and this is always greater than equal to 0. Therefore, you use Sandwich 

theorem to show that this goes to 0 as k tends to infinity. Therefore, the Gauss-Seidel iteration 

sequence will also converge if the coefficient matrix A is diagonally dominant. 
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Now our next question is can we write Gauss-Seidel method in the matrix notation? Recall we 

have written Jacobi method in the matrix form that is we have written the Jacobi sequence as 

𝑥(𝑘+1) is equal to some matrix 𝐵𝑥(𝑘+1) + c. Let us denote this matrix by 𝐵𝐽 and it is called the 

Jacobi iteration matrix and similarly we will call that c as 𝑐𝐽 in order to see that it is the vector 

and the matrix coming from the Jacobi method. 

 

If you recall 𝑏𝐽 is given by 𝐷−1𝐶 and 𝑐𝐽 is given by 𝐷−1𝐵, where D is the diagonal matrix, 

whose elements are precisely the diagonal elements of the matrix A. Similarly, C is given by D 

– A. Now the question I,s can we write Gauss-Seidel method also in this form? That is the 

question. The answer is yes. We can write Gauss Gauss-Seidel method also in this form. 

 

How to write it? If you recall instead of keeping all the non-diagonal elements as one matrix 

what we are doing? We are further decomposing that non-diagonal element as lower part of 

the diagonal element and upper part of the diagonal element. That is what we are doing in the 

Gauss-Seidel method. 
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Therefore, we will now write the matrix A as L which contains all the lower part of the diagonal 

elements plus diagonal element plus all the upper part of the diagonal elements as separate 

matrix. Once you do that then the given system 𝐴𝑥 = 𝑏 can be written as (L + D + U) x = b. 

That can be written as (𝐿 + 𝐷)𝑥 = 𝑏 − 𝑈𝑥. Now from there we can easily write 𝑥 =

(𝐿 + 𝐷)−1𝑏 − (𝐿 + 𝐷)−1𝑈𝑥. 

 

And thereby we can define the Gauss-Seidel iteration sequence in this form. That is x is equal 

to some 𝐵𝑥 + 𝑐. That is the form which we would like to have for the Gauss-Seidel method 

also which was already there for the Jacobi method and now we know how to write this iterative 

matrix. This is called the Gauss-Seidel iterative matrix. Let us give the notation 𝐵𝐺 for it and 

similarly the vector is denoted by 𝑐𝐺, where 𝐵𝐺 is given by −(𝐷 + 𝐿)−1𝑈 and 𝑐𝐺 is given by 

+ (𝐷 + 𝐿)−1𝑏. 
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Let us take an example. You can clearly observe that in this example the coefficient matrix is 

not a diagonally dominant matrix not only that any interchange of rows will not make this 

system diagonally dominant. Therefore, none of our previous theorems whether it is Jacobi 

method or Gauss-Seidel method will give us any idea of whether the sequences are going to 

converge or not. 

 

Let us see what is going to happen with this system when we apply Jacobi and Gauss-Seidel 

methods. Remember the coefficient matrix is given by A = 1, 0, 1, –1, 1, 0 and 1, 2 and -3. First 

to write Jacobi iteration in the matrix form you take D which is precisely the diagonal matrix 

with all the diagonal elements from A and rest of the elements are arranged to get C. 
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Therefore, your Jacobi iteration matrix is given like this. 
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Similarly for Gauss-Seidel iteration what you do? You collect all these terms that is the lower 

part of the diagonal terms as L then keep all the diagonal terms with D and take all the upper 

part of the diagonal elements and arrange them in this form to get U. Once you get that you can 

write the iterative matrix for Gauss-Seidel method and it is given like this. 
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Therefore, the Jacobi iteration sequence in the matrix notation is given like this and the Gauss-

Seidel iterative sequence in the matrix notation is given like this. You can also write it in the 

component form and also you can implement it as a computer code. That may be much more 

simple and efficient rather than writing in the matrix form because you need to invert this 

matrix which may not be efficient computationally. 

 



This is just for our understanding I am giving you this. You will understand why I am giving 

this form probably in the next class. But for now, we will do the iteration using Jacobi method 

and Gauss-Seidel method. 
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For that we will take our initial guess as 1, 1, 1. I am not now going to choose the 0 vector 

because 0 vector is the solution of our system. Therefore, that may not be a good choice for us 

as an initial guess. So, I am taking this vector; there is a reason for this also but that I will tell 

you later. Let us do the computation using Jacobi method. You can see that the Jacobi method 

started with this iteration 𝑥(1) and the 𝑙2 error is given in this column. 

 

I am not showing you all the iterations but I am only showing you some iterations. After 10 

iterations the Jacobi method gave this vector, whereas the error it is improved but not so fast. 

You see even after 10 iterations we have not even captured one significant digit of the exact 

solution. That is really too much, because generally 10 iteration itself is very big. Not only that 

I went up to 50 iterations. 

 

Hardly perhaps one significant digit it might have captured or even not that. And after 10 

iterations you can see that only 2 digits after decimal points are captured as 0. That is really 

very slow and then further I went up to 200 iterations even there hardly four digits of 0 are 

captured. So, this shows that well Jacoby method seems to be converging but it is very, very 

slow; 200 iterations are generally computationally not affordable. 

 



Because you can count the number of operations involved in each iteration and now if you are 

going say 500 iteration, 600 iteration, 1000 iterations then it may not be meaningful for us to 

go for iterative methods rather than going for Gaussian elimination method. So, we should get 

the convergence within 10, 20 or something like that depending on the dimension of the system. 

 

Such convergence are really not affordable computationally. Let us try to see what is going to 

happen with Gauss-Seidel. Because we may expect something better in Gauss-Seidel. Why? 

Because we have seen that η is less than or equal to μ, what it means in the error bound for 

Jacobi method we had this μ(𝑘+1)||𝑒(0)||∞. Of course, we computed it with infinite norm but 

that does not matter. 

 

And similarly, this is for Jacobi method. For Gauss-Seidel method we had ||𝑒(𝑘+1)||∞ ≤

η𝑘+1||𝑒(0)||∞, therefore at least for diagonally dominant matrices this coefficient which we 

generally call as rate of convergence sometime. The rate of convergence seems to be better for 

Gauss-Seidel method than for the Jacobi method. Therefore at least in the diagonally dominant 

case Gauss-Seidel method is expected to perform better than the Jacobi method because of this 

factor. 

 

But now remember we are working with non-diagonally dominant system, will Gauss-Seidel 

method perform better than Jacobi method? Let us see; we will compute the iteration sequence 

of Gauss-Seidel method and see what is happening. Before that I will just show you the graph 

of the error that is the 2 norm of the error is shown in this graph. You can see that as you go on 

increasing the iteration the x-axis is the index of the iteration. 

 

That is k and y-axis is the 𝑙2 norm of the error. You can see that the error is gradually decreasing. 

You also have some oscillations here; this is quite common in the iterative methods. It means 

the iteration here was better than the iteration here. So, the iteration error just increased. Again, 

it fell, again it increased like that it goes. But as you go on the error is tending to 0. 

 

So, this is the 0 line, so it is tending to 0, but it is quite slow. In the Jacobi case let us see what 

is happening to Gauss-Seidel case. 
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At the first iteration we get 𝑥(1) = -1, -1 and -1 and the 𝑙2 error is given like this. Remember, 

we have the initial guess as 1, 1 and 1. If you go back to the iterative matrix of the Gauss-Seidel 

method you can see that 𝐵𝐺 is given like this. Therefore, when you multiply it with 1, 1, 1 

clearly you will get -1, -1 and -1 as 𝑥(1). So, that is why you see this vector as the first term of 

the iterative sequence in the Gauss-Seidel method. 

 

Now you can also see what happens with the next iteration by just looking at the iterative 

matrix. It will be simply 𝑥(0). Now once you have this again 𝑥(3) will be 𝑥(1) and so on. So, in 

this way we get an oscillating sequence in the Gauss-Seidel method and therefore the Gauss-

Seidel method never converges. In fact, I have gone up to 200 iterations and you can see that 

the sequence simply oscillates and keeps the error at a constant level. 

 

Therefore, in this example we can see that the Jacobi method is converging but rather very 

slowly whereas Gauss-Seidel method does not converge, it simply oscillates. So, what we 

understood in today's class is that when that is the coefficient matrix is diagonally dominant 

then Gauss-Seidel method will perform better than Jacobi method; will both of them or order 

wise they are linear order. 

 

However, Gauss-Seidel accuracy will be little better than Jacobi's accuracy if the coefficient 

matrix is diagonally dominant. If the coefficient matrix is not diagonally dominant then we 

cannot say anything. Jacobi method may converge for which Gauss-Seidel may not convert. 

The same can happen other way also. Gauss-Seidel may converge but Jacobi may not converge 



in some other examples. There are examples like that where Gauss-Seidel converges, but Jacobi 

never converges. 
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Here we saw as instant where the sequence is not converging but it is just oscillating. The 

sequence can also diverge, it means it can just go to infinity also; anything can happen if the 

coefficient matrix is not a diagonally dominant matrix. Therefore, our understanding on these 

methods is still not complete. Something interesting is happening in these methods which is 

when the system is not diagonally dominant. 

 

Therefore, there is still some scope for us to analyze and understand what is going on with 

these methods when the coefficient matrix is not diagonally dominant. This is what precisely 

we are going to do in the next class. Thank you for your attention. 


