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Hi, in the last few lectures we have finished the direct methods for solving linear systems. As 

the next topic we are supposed to take up iterative methods for linear systems, but we will take 

a small deviation from our usual stream and learn a tool called matrix norms. This tool is very 

important for us to do error analysis for iterative methods. 
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We will start our discussion with vector norms. Well, first let us understand what is mean by a 

norm? A norm is an abstract version of a distance concept. We all know that if we have two 

points x and y, say both x and y are real numbers then the distance between x and y is given by 

|𝑥 − 𝑦|. Similarly, if x is a vector in the plane given by (𝑥1, 𝑥2) and similarly y is a vector on 

a plane given by (𝑦1, 𝑦2). 

 

Then the distance between these two points is given by √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2. We know 

that this is called the Euclidean distance or Euclidean norm. So, we generally denote it by ||𝑥 −

𝑦||2. This is the physical distance between the two points in whatever unit that we measure. 

Now our interest is to generalize this idea and in that way we can bring in more functions into 

this class which can mimic this distance idea. That is what the aim of defining norms. 
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Let us see the definition of vector norm. A vector norm is basically a function defined on ℝ𝑛, 

such that when you apply that function on a vector x in ℝ𝑛 it gives a non negative real number. 

That is the basic need of a distance. That is distance between two points is always a non-

negative real number. Let us denote this norm by this notation generally a function means we 

use notation f, g and so on. 

 

But here we have this notation where you just give any point x that gives us a number which is 

say α which is greater than or equal to 0 and not only that this function has few properties what 

we do is we just carefully observe some of the important properties that a distance function 

satisfies that is the Euclidean distance in the case of ℝ2 and similarly this idea can be 

generalized to any ℝ𝑛 and in one dimension it is just the modulus. 

 

So, we will carefully observe some of the important properties of this distance functions and 

just impose those conditions on this function and call the resulting function as a vector norm. 

That is the idea, obviously if you take any vector x in ℝ𝑛 and if you find the distance between 

x and the 0 vector. 
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That is what we denote by this. So, this will now indicate in some sense a distance function. 

So, you should see the definition of norm by keeping the distance concept in mind. So, the 

norm should give some number for a given vector x which is non-negative. That is the first 

condition that we want our function to satisfy. Well, that is already inbuilt in the way we have 

defined our function. 
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The next condition is that the distance between x and the origin 0 is 0 if and only if that x itself 

is in the origin. That is also something which you can easily understand without any problem. 

The same condition is also imposed for our norm function. Next is the scaling property; you 

multiply α with x and then find the distance. That should be same as you find the distance 

between α and 0. 

 



And then multiply with |α|. They both should be the same. So, this condition is also imposed 

on the vector norm and finally the well-known triangle inequality, which is satisfied by the 

Euclidean distance also in 1D, modulus satisfies this that is |𝑥 + 𝑦| ≤ |𝑥| + |𝑦| is a very simple 

property that we all know. We are imposing that property also on to our function. And if all 

these conditions are satisfied by this function, then we will call that function as vector norm. 
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Well, we will see some examples. First is the physically realistic distance function called 

Euclidean norm and that is given like this when x belongs to ℝ𝑛. We wrote it for n = 2 which 

will be the same for any n that we take and this is the Euclidean norm and that is the physically 

realistic way of finding distance between a given point x and the origin. Now we can extend 

this distance concept to something abstract and say that there are also other functions that can 

mimic our distance function. 

 

One example is what we call as 𝑙∞ norm and that is denoted by this notation with the suffix 

infinity and its definition is, you take the modulus of each component of the vector x and then 

take the maximum of all this guys and that is what we will assign as infinite norm of x. You 

can verify that all the important properties that we listed in the previous slide that is satisfied 

by the physically realistic distance function is also satisfied by this function. 

 

See the number that this gives for a given x and the number given by this function for a given 

x may be different but this function will satisfy all the properties that this function satisfies. 

That is the only idea behind this abstract concept of norm. The next example is what we call as 



𝑙1 norm and that is denoted by these parallel lines with a suffix 1 and its definition is that you 

take modulus of all the components of the vector x and then sum them up. 

 

You can again verify all the properties listed in the definition of vector norm by this function 

and therefore it is also a vector norm. Remember these are the three norms that are commonly 

used in numerical analysis while doing error analysis which involves any vectors. However, 

there are many other ways that we can define vector norms, but we will not go into listing all 

of them. 

 

Whatever we do in our course we will use one or the other of these three norms only. Mostly 

we will use 𝑙∞ norm, because it is very convenient to use. You may ask the question when we 

have the physically realistic distance concept why are we putting effort to make an abstract 

idea out of this distance concept and get all these definitions which are not physically realistic; 

they just mimic the distance concept but they are not going to give you physically what comes 

as the distance. 

 

So, that is so why are we even worrying about this abstract concept? Well, there are two reasons 

for why we are interested in making this distance concept abstract and considering some of this 

which are actually physically not realistic. There are two reasons; one is that we need to find 

distance not only between two vectors we will also come across situations where we want 

distance between two matrices. 

 

Now how will you even imagine finding distance between two matrices or in general we may 

have to also find distance between two operators or two functions something like that. So, it is 

not very clear how to define distance between two such mathematical objects? So, one needs 

to put this distance concept in abstract form so that that can be used to adopt some distance 

between two objects such as two matrices. 

 

That is one reason for going for an abstract definition of distance. The next one is often 

physically realistic distance concept like this are not very easy to handle, they are very difficult 

to handle. Therefore, to understand the errors and their behaviour we may have to simplify our 

problem by going for some other distance concepts which are perhaps equivalent to studying 

such error analysis with the physically realistic distance concept. 

 



That is why we also want to take up some of the other ways of defining the distance which may 

not be physically realistic, but is some way equivalent to our physically realistic distance. These 

are the two reasons why we go for putting the distance concept in a abstract way. 
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Well, we understood this and now let us go to define what is mean by matrix norm. Remember 

wherever I say norm you have to keep in mind the distance concept and see norm as a 

generalization of the distance concept. Now we are trying to make a tool to measure distance 

between two matrices. Well once you understood how we measure distance between two 

vectors. 

 

Now we can just mimic that to define what is mean by matrix norm. Again, we will use the 

same notation for matrix norm; we will generally not distinguish the matrix norm with vector 

norm through its notation because the argument itself will tell us whether we are having a 

vector norm or a matrix norm. So, a function denoted by this symbol which is now going to be 

a function between the set of all 𝑛 × 𝑛 matrices with real entries to non-negative real numbers. 

 

And that function should have the following properties in order to be called as matrix norm. 

The first property is of course given here that you take any matrix A, plug in into this function 

that function should generate a number that should be greater than or equal to 0. The next 

property is if that number given by the matrix norm is 0 it means you have given the 0 matrix 

and the third condition is the scaling property. 

 



The same set of properties that we have listed for vector norm is also listed here that is all. α𝐴 

you take and then take the norm that should be equal to |α| ||𝐴||. That should hold for any real 

number α. That is important and finally the well-known triangle inequality should also be 

satisfied. Well, we will generally use this usual notation for matrices. 
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Just keep this notation in mind and let us see some examples of matrix norms. First thing is if 

you define a function which takes a matrix A and gives this as the number, you can see that 

clearly it is a non-negative number and you can also check that all the other properties of the 

matrix norm is satisfied by this expression. Therefore, a function given by this for a given 

matrix is indeed a matrix norm. 

 

Similarly, you take the modulus of all the elements of the matrix A and then take the maximum 

of them. That will also define a matrix norm and finally take all the absolute values of the 

elements of A and then sum them all up that also will define a matrix norm. These are some of 

the examples of matrix norms. There are also other examples. 
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An important example of a matrix norm which is quite common in applications; I will tell you 

why it is so important little later. Now let me just define this matrix norm, it is generally denoted 

by this notation that is norm with a suffix 2 and it is defined as the maximum of the modulus 

of all the eigenvalues of the matrix 𝐴𝑇𝐴, it is not the eigenvalues of A, but it is the eigenvalues 

of 𝐴𝑇𝐴. 

 

That is the point that one has to keep in mind. So, this particular norm is very important you 

can check that it is indeed a matrix norm. 
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Now we will discuss a very useful class of norms called matrix norm subordinate to vector 

norms. The idea is you give me a vector norm, I will generate a matrix norm with the help of 

that vector norm that is the idea. How am I going to generate a matrix norm for a given vector 



norm? Let us see. As I told you are given a vector norm on ℝ𝑛, now I am going to give you a 

matrix norm which is so called subordinate to the vector norm and it is defined as 

sup  {||𝐴|| : 𝑥 ∈ ℝ𝑛, ||𝑥|| = 1}. 

 

That is, you take all the unit vectors in ℝ𝑛, find 𝐴𝑥 and then take the vector norm of all this 

vectors 𝐴𝑥. Remember whenever we put these two parallel lines on both sides of a vector it 

denotes a vector norm and the same if you put on both sides of a matrix then it is a matrix norm. 

Subordinate matrix norm is very useful because this particular way of defining a matrix norm 

for a given vector norm is going to satisfy three important properties which are very useful in 

our error analysis. 

 

Also, when we are dealing with the error analysis of an iterative method for solving 𝐴𝑥 = 𝑏, 

you will naturally see that the equation is some way combining a vector and matrix. Therefore, 

you have to have some way of linking your matrix norm with the vector norm in order to get 

some feasible results. That is why we are coming up with this kind of ideas. That is, we would 

like to work with a matrix norm that is generated from the vector norm in this way. 

 

In other words we will consider a particular vector norm and then we will take the 

corresponding matrix norm subordinate to that vector norm and we will use these two norms 

in our error analysis for iterative methods in the next section. So, for that we have to understand 

the concept of subordinate norms. 
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Let us put the definition of subordinate norm in a little different way that is more useful for us 

in working with them. That is, you are given any matrix A and a given vector norm. Now you 

know at least mathematically how to define a subordinate matrix norm, you can see that that 

subordinate norm can also be written in this way. Remember by definition we have to take the 

supremum over unit vectors. 

 

But now what we are doing we are taking the supremum over all non-zero vectors. That is the 

only difference, but this should not be a difficult thing to understand because you take any non-

zero vector z you can always write 𝑥 =
𝑧

||𝑧||
. Then you can see that x will become a unit vector. 

Therefore, your subordinate matrix norm which is by definition given like this, you are taking 

the supremum over all unit vectors, that can be now written as, simply substitute this expression 

into x and that gives you maximum over all 𝑧 ≠ 0, A, instead of x now I am putting this 

expression.  

 

Just take z outside and then you will get this expression. That is what you would like to show 

here. So, it is a very simple proof and its very useful way of defining the subordinate norms 

rather than the norm that we have defined. That is only for the definition sake but in most of 

the results we will be using this definition for subordinate norm. 
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Let me list all the three properties that I told previously which are very important for us in 

doing error analysis in the next section. The properties of the matrix norm that we are interested 



are here. First is ||𝐴𝑥||  ≤ ||𝐴||  ||𝑥||. Remember this is a vector norm, this is a matrix norm 

and again this is a vector norm. Let us see how to prove this first result. 

 

Well, if x = 0 it is very clear because in this case A x is 0, therefore norm of 0 is 0. On the right-

hand side norm of 0 vector is again 0. Therefore, you have 0 = 0, therefore if x = 0 this equality 

holds in the first case. Now let us take 𝑥 ≠ 0 then you can write 
||𝐴𝑥||

||𝑥||
≤ 𝑚𝑎𝑥

𝑥≠0

||𝐴𝑥||

||𝑥||
. 

 

Because this is just any vector from this set and the right-hand side is obtained by taking 

maximum over all such vectors. Therefore, this value should surely be less than or at most 

equal to this and that is nothing but ||𝐴|| by our previous Lemma. From here we can 

immediately get the first inequality. The second inequality can be easily obtained from the first 

inequality. 

 

That should not be a problem. Let us take the third property. In the third property what you can 

do is you just write 
||𝐴𝐵𝑥||

||𝑥||
 and take the maximum over all 𝑥 ≠ 0, that is nothing but your ||𝐴𝐵|| 

by definition. Now this can be seen as A into some vector therefore by first property you can 

write this as 𝑚𝑎𝑥
𝑥≠0

||𝐴|| ||𝐵𝑥||

||𝑥||
. 

 

Again, you apply the first inequality for this term ||𝐵𝑥|| that will be less than or equal to 

𝑚𝑎𝑥
𝑥≠0

||𝐴|| ||𝐵|| ||𝑥||

||𝑥||
. Now you see x and x gets canceled and now what remains is independent of 

x. Therefore, that is equal to ||𝐴|| ||𝐵|| and that is the proof of the third inequality. Well, these 

are some of the properties that we will be using quite often in our error analysis of iteration 

methods. 

(Refer Slide Time: 25:31) 



 

Now the interesting part is, I will give you some vector norm how can I generate a matrix norm 

subordinate to that vector norm. If you carefully look at the definition it is very abstract you 

cannot make any sense of how the matrix norm will look like for a given vector norm. But 

interestingly you can get a very nice formula for subordinate matrix norm for the important 

three vectors norms that we have given at the beginning of this lecture. 

 

That is 𝑙2 norm, 𝑙∞ norm and 𝑙1 norm. Let us give the formulas for the matrix norm subordinate 

to these three vector norms, we will not prove these theorems but we will just consider them 

as formulas. Suppose your given norm is 𝑙∞ norm, that is recall your vector now is given like 

this, then the corresponding subordinate matrix norm is defined like this. How will you do that? 

 

If you carefully see you take each row and find the sum of the absolute values of the column 

elements of that row and then sum that. Now in a 𝑛 × 𝑛 matrix you have n such rows, therefore 

you have n such numbers like this. Now take the maximum of that. So, this is called the 

maximum of row sum norm. 
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Let us see an example. Suppose you are given this matrix, from the first row you get the number 

3 by taking the absolute value of each column of that matrix and then sum them up. Then the 

second row will give 5 and the third row will give 4. Therefore, the matrix norm subordinate 

to the 𝑙∞ norm denoted by ||𝑙||∞ is given by 5 because you have to take the maximum over 

these three numbers. 
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Now for the matrix norm subordinate to 𝑙1 norm it is just row should be replaced by column in 

the previous definition that is you take each column and take the absolute values of the elements 

of each row in that column and then sum them. Like that you have n numbers now. For each 

column you have one number, like that n numbers. Now you take the maximum of all those 

numbers and that is called the maximum of column sum norm. And this is the matrix norm 

subordinate to 𝑙1 norm; you can just compute the 𝑙1 norm of the previous matrix. 
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Now coming to the 𝑙2 norm that is the Euclidean norm. That is if you are given the vector norm 

as the Euclidean norm the physically realistic norm given by this if you recall. Then the 

corresponding subordinate norm is the one which I have already introduced that is maximum 

of all the eigenvalues of the matrix 𝐴𝑇𝐴. This is very important; it is the eigenvalues of the 

matrix 𝐴𝑇𝐴 and then take the square root here. 

 

And that is the matrix norm subordinate to the physically realistic norm that is the Euclidean 

norm. Now you can see that if you have to work with the physically realistic norm then the 

corresponding matrix norm involves the computation of the eigenvalue of this matrix. So, it 

involves the product of these two matrixes and then finding the eigenvalues of this matrix. So, 

that is computationally very costly. 

 

That is why we often do not prefer to work with 𝑙2 norm rather we will try to work with 𝑙∞ or 

𝑙1 norm because you can see that the subordinate norms in the case of 𝑙1 and 𝑙∞ are very easy 

to compute. So, that is the reason why also we want to look for some equivalent way of doing 

our error analysis rather than going for this physically realistic distance concept. 
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Again, let us take an example and compute the two norms for the matrix A. For that you have 

to find the eigenvalues of 𝐴𝑇𝐴. In this case they are given by these numbers and clearly the 𝑙2 

norm of this matrix is √12.9128 and that is given by this number. This is the 𝑙2 norm of the 

matrix A given by this. In the next class we will see a concept called condition number of a 

matrix which will tell you how sensitive it is for us to perform any computation of a matrix on 

a computer. 

 

That in fact involves matrix norm and therefore it is very important for us to understand the 

meaning of matrix norm and also you have to understand how to compute the matrix norm 

subordinate to a given vector norm in particular, we will be restricting ourselves to one of these 

three norms. Thank you for your attention. 


