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Hi, in this lecture we will learn to implement a slight variation of Gaussian elimination method 

called Thomas algorithm which is applicable if the coefficient matrix A is a tridiagonal matrix. 

We will first see how to do Thomas algorithm and then we will also learn to implement Thomas 

algorithm in this lecture. 
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Let us consider a tri-diagonal system. A tri-diagonal system has non-zero elements only at its 

diagonal part and then the lower diagonal part and the upper diagonal part. Other than this all 

other entries are 0, this is shown in this system. Here I am only showing the left-hand side of 

the system 𝐴𝑥 = 𝑏. So, this entire thing should be equal to the b vector on the right-hand side. 

Here you can see that the diagonal elements are non-zero denoted by β𝑖 's. 

 

And similarly, the lower diagonal elements α’s are non-zero, shown here, and the upper 

diagonal part γ’s are also non-zero entries in the coefficient matrix. Remember few of them 

may be 0, but generally we will assume them as non-zero elements. Other than that everybody 

else will be 0. So, how the structure of the matrix will look like, therefore we have diagonal 

element which is taken to be non-zero then the lower diagonal elements and then the upper 

diagonal elements. 



 

All other elements are zeroes here and this is how a tridiagonal system will look like. So, the 

first element of the matrix is denoted by β1 and the first row second element is γ1 and all others 

are 0s and then in the next line the first element is α, let us call it as α2 then β2, γ2 and then all 

other elements are 0 like that it goes and finally at the last row you will have β𝑛 and previous 

to that you will have α𝑛. 

 

That is what you can see here and this is how the structure of the tridiagonal system will be. 

Tridiagonal systems often occur in certain applications especially when you try to build a 

numerical method for certain PDEs we apply finite difference methods or even finite element 

methods. PDE can be approximated by a linear system and that linear system in some cases 

will turn out to be a tridiagonal system. 

 

And therefore, solving tridiagonal system is a very important problem. Thomas algorithm is 

often used in such cases. Thomas algorithm is a slight variation of the Gaussian elimination 

method. The underlying idea is exactly the same, but we will take the tridiagonal structure and 

adopt the Gaussian elimination method for this. Let us try to understand the Thomas algorithm. 
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The first equation is given like this β1𝑥1 + γ1𝑥2 = 𝑏1, we have to rewrite the first equation like 

this where 𝑒1 is given by 
γ1

β1
 and 𝑓1 is given by 

𝑏1

β1
. 
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Now once you reduce the equation 1 then let us go to the equation 2. In equation 2 we have 

only 3 terms all other terms are 0. We have α2𝑥1 + β2𝑥2 + γ2𝑥3 = 𝑏2. Now what we do is you 

have to do an elimination process just like what we do with the Gaussian elimination method 

to eliminate the variable 𝑥1 here. Once you do that then the resulting equation which involves 

only 𝑥2 and 𝑥3 on the left-hand side will be finally written in this form with an appropriate 

definition of 𝑒2 and 𝑓2. 

 

You can check this how we are getting it, just do the elimination process similar to the step 1 

in the Gaussian elimination method then you will get this equation. You have to replace this 

equation with the second equation of our original system. Now you continue like this. In 

general the jth equation is written as 𝑥𝑗 + 𝑒𝑗𝑥𝑗+1 = 𝑓𝑗  and once you write this then the next 

equation that is j + first equation is again put in this form with 𝑒𝑗+1 given like this and 𝑓𝑗+1 

given like this. 

 

So, this is the general form of the Thomas algorithm. Once you finish the elimination from 2 

to n – 1. Remember the first equation is done directly, there is no elimination process for that 

we are only rewriting the first equation. From the second equation onwards we have the 

elimination process just explained in the case of second equation you have to carry over a 

similar idea for all the other equations starting from the second equation up to last but one 

equation. That is up to n – 1 equation. 

 

nth equation again can be done in a rather direct way and you can get the nth equation like this. 

Note that we have to do an elimination process in the nth equation also, but once you do that 



the nth equation is just involving 𝑥𝑛 and therefore we can get 𝑥𝑛 directly from this equation. 

Once you get 𝑥𝑛 from the nth equation you can substitute that into the n – 1 equation and get 

𝑥𝑛−1. 

 

Once you know 𝑥𝑛−1 and 𝑥𝑛 you can substitute them into the previous equation and get 𝑥𝑛−2 

and so on. So, in other words after doing this elimination process you can get the solution of 

the tridiagonal system by doing the backward substitution process. So, this is the idea of 

Thomas algorithm. Let us try to see how to code this method. 
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Let us first see what are all the inputs for our code, well the dimension of the system n is the 

first input; I am just taking it as 4 and then instead of defining the entire matrix we can just 

define the lower diagonal elements, upper diagonal elements and the diagonal elements. Recall 

that we have used the notation α, β and γ for lower diagonal and upper diagonal elements. 

 

The same notation, I am using here also. Recall that the equation will look like β1, γ1, 0, 0 then 

α2, β2, γ2, 0 and then 0, α3, β3, γ3 and then 0, 0, α4, β4. This is the tri-diagonal system in the 

case of n = 4. Just keep this structure in mind and see how I have defined αs, βs and γs. I am 

defining α as a list or array where I have put 0 at the first position because there is no α in the 

equation 1. 

 

That is why I put 0 here and then I am taking α2 as 1, α3 as 2 and α4 as 3. Similarly, β is 

defined like this and you can see that β has 4 components, it appears in all the equations and 



similarly γ has only 3 components, it starts from the first equation and goes up to the third 

equation. Last equation will not have γ. That is why I have put 0 on the last component of γ. 

 

And then I am taking b as an input and I have just given it as [1, 2, 3, 4]. Now let us go for the 

elimination process. If you recall we have to obtain two parameters, one is e and another one 

is f in the method, e is sitting here and f is coming from the right-hand side elimination process. 

Let us see how these things have to be incorporated in the code, well we will use this formula 

for 𝑒1 and 𝑓1. 

 

And then for 𝑒2 and 𝑒3 we will use this formula. Again, for the last equation we have to plug 

in this expression. Let us see how to do that. 
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We will first initialize e and f as a four-dimensional vector and we will initialize x as again a 

four dimensional vector, you can also write x = [0, 0, 0, 0], but just to show that we can also 

initialize these vectors in this form, I have just written like this. These two are equivalent in 

python and now we have to define 𝑒1 that is nothing but 
γ1

β1
. That is what we have seen in the 

method. 

 

That is what is written in this line; remember 𝑒1 mathematically means e[0] in python because 

python starts its index from 0 and goes up to n – 1. I am always emphasizing this because this 

is very important and often it is a confusing terminology. Therefore, I am just emphasizing it 



again and again. Similarly, 𝑓1 is defined as 
𝑏1

β1
 and that is what given here. Now once we have 

the first equation, second equation onwards till n minus first equation we can go in a loop. 

 

That is what we are theoretically writing here from j = 2 to n - 1 we can define the parameters 

e and f in a loop. Let us see how to do that. 
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For that we will use the for loop that runs from 2 to n – 1, theoretically j runs from 2 to n - 1 

and in python equivalently it has to run from 1 to n - 2 that is what is happening here. Remember 

range of 0, 10 will create a sequence starting from 0, 1, 2 up to 9 only, it will not include 10. 

That is what we have seen in one of our python session that we have to remember this confusing 

terminology that when you say range from some number to some number n it will go from this 

number till one number less than this. 

 

Similarly, here it starts from 1 and goes up to n - 2 only, it will not include n - 1 in the sequence 

that the range generates. Therefore in order to create a sequence like this we have to use this 

command and we are taking j varying from 1 to n - 2 mathematically that is equivalent to saying 

2 to n - 1 that is what precisely we want in our method and I am just going to define e[j] as, if 

you recall what is the expression for 𝑒𝑗+1, 
γ𝑗+1

β𝑗+1−α𝑗+1𝑒𝑗
.  

 

And a clever observation is that the denominator in 𝑒𝑗+1 is the same as the denominator in 𝑓𝑗+1 

also. Therefore what you can do is instead of defining e [j] and f [j] with the denominator 

calculated separately each time you can just calculate the denominator once, store it in the 



variable d and then use it here as well as use it in the denominator of f. In that way what you 

are doing is you are saving some operations. 

 

You can also put this expression explicitly here as well as here, but that will unnecessarily 

involve one additional arithmetic operation. Just to avoid that I have computed once and then 

plugged in those values in the expression of e and f. 
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Now you can see that we have found e[0], f[0] and then all the others right from j = 1 to n - 2. 

We are left out with the last equation n – 1, that is the last equation as far as the python is 

concerned theoretically, nth equation is the last equation and from the last equation we can 

directly get the last component of x that is 𝑥𝑛 which is in python's notation x[n – 1] and if you 

recall that can be directly obtained from this last equation. 

 

Here you can see that 𝑥𝑛 can be written as this divided by this quantity. So that is what I am 

doing here x[n-1] which is nothing but our 𝑥𝑛 is equal to the right-hand side divided by what 

was sitting in the left-hand side is now brought to the right-hand side. Once you have found 

x[n-1] then getting the other expressions are quite easy, you found  which is mathematically 

𝑥𝑛. 

 

That you will put in the 𝑥𝑛 minus first equation to get 𝑥𝑛−1. That is what I am doing here. Now 

I am creating a loop j ranging from n - 2 that is the first element of the range goes till 0. So, it 

has to go till 0 n - 3 and so on up to 0 it has to go that is why I put in range -1 and the increment 



is -1 here. It means it will keep on reducing the number till it reaches 0. So, that is what is 

meant by this command. 

 

And now for each j what we are doing is 𝑥𝑗 = 𝑓𝑗 − 𝑒𝑗𝑥𝑗+1. So, that is how the equation is going. 

Because if you recall we have written 𝑥𝑗 + 𝑒𝑗 ∗ 𝑥𝑗+1 = 𝑓𝑗 . That was the equation and you know 

𝑥𝑗+1 because you know 𝑥𝑛 from there you can get 𝑥𝑛−1 and so on. So, this loop will go and do 

the back substitution process and finally it prints the vector x here. I have just put this command 

in order to get only the x values rounded to 5 decimal digits. 

 

For that I have used this command. Now whatever the python prints from this command will 

be restricted to 5-digit rounding. Let us try to run this program and see the output. 
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You can see that the program is executed and this command had printed the solution of the 

tridiagonal system as this, you can see that it is restricted to only 5 decimal digits in each 

component of x because of this command and that is the Thomas algorithm implementation. 
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Before ending this class let me also discuss an important program which I wanted to discuss in 

our previous python session, but because of the lack of time, I could not discuss it there but I 

would like to discuss it here. You can see that in one of our theory class, we have taken this 

function and we have calculated the value of this function at the point x = 100000 using 6-digit 

rounding. 

 

Now how to implement this calculation as a python code? That is the question; let us try to 

understand how to implement this calculation on python. 
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Well to define the function you can also use this command which will create a function f and 

assigns this expression symbolically and you can evaluate the function value by just plugging 

in 𝑓(𝑥) here. So, that can give you in one go the value of the function f which is equal to 



𝑥(√𝑥 + 1 − √𝑥). Remember square root is not a python command, it is inbuilt in one of the 

libraries or modules whatever you say and that module is numpy. 

 

Therefore, I am calling numpy and then executing the square root here. And we want to find 

the value of this function at the point x = 100000, so I have also assigned the variable x = 

100000. Now this line will get the value of f at 100000 with of course 52 digits in mantissa 

because generally python computes values in double precision, but what we want is to compute 

the value of f at x = 100000 using 6-digit rounding. 

 

How to do that? Well, you can do it using this command. The command is float open brackets 

format open bracket whatever value you want to give and then this .6g. Suppose if you want to 

use 7-digit rounding then you have to use .7g or any n-digit rounding you have to use dot ng. 

That n value you have to plug in here. That is the format what we are doing is first we are 

finding fl(x). 

 

If you recall in one of our previous lectures, we have explained how to do arithmetic operation 

using n-digit rounding, you first have to round the number x and then you add that number with 

1. To get this x + 1 expression, now what I am doing is, I am rounding x right to 6 decimal 

digits, storing that value in the variable x1 and then I am adding 1 to the value x1. Then I am 

again finding the 6-digit rounding of x1 + 1. 

 

That is what I am doing here and that value is stored in x2 and then I am taking square root of 

x2. That is, I am computing this term here, after computing square root of x2, again I am taking 

6-digit rounding of that and storing it in  x3. Once you get x3 you keep it on one side and go 

to do this second term, remember the argument of the second term is fl(x) that is stored in x1. 

 

Therefore, I am taking square root of x1 and then doing a 6-digit rounding of that and storing 

it in x4. Now x3 precisely has the 6-digit rounding of this term and x4 has 6-digits rounding of 

the second term. Now what I am doing is, I am subtracting these two terms and again taking 

the 6-digit rounding of that term and that is stored in x5. So, finally you have the complete 6-

digit rounding calculation of this term stored in the variable x5. And then remember already 

fl(x) is stored in x1. 

 



So, finally you are doing x1 * x5 and then doing the 6-digit rounding of that term and that is 

stored in x6. Therefore the final answer that we want, that is we want the value of this function 

at the point x = 100000 with 6-digit rounding calculation, is finally stored in x6 and that is what 

I am printing in this line. And I am also printing the value of the function f directly with 52 

digit rounding because it is a double precision calculation and let us see the output of this 

program. 
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The output of the function with 6-digit rounding is 100, whereas the more accurate answer is 

158.113. If you go back to our class where we discuss this problem there also we have shown 

the output of this calculation as 100 which we have now calculated using a python code. With 

this we will end this class. Thank you for your attention. 


