
Numerical Analysis

Prof. S. Baskar

Department of Mathematics

Indian Institute of Technology-Bombay

Lecture-13

Linear System: Python Coding for Naive Gaussian Elimination Method

Hi, in this lecture, we will learn to implement Gaussian elimination method as a python code.

We will start our discussion with a quick recall of the Naive Gaussian elimination method.

(Refer Slide Time: 00:34)

Remember, we will implement only the Naive Gaussian elimination method. We will not go

to implement the modified Gaussian elimination method in this class. As we did in the theory

part we will implement the Naive Gaussian elimination method only for a 3 × 3 system. Recall

that the Naive Gaussian elimination method first does an elimination process in which we will

convert the given system into a upper triangular system by doing certain elementary row

operations, the elementary row operations are as follows.

First, we will define certain elements like 𝑚21, 𝑚31 which are given like this. This should hold

only if 𝑎11 is not equal to 0; therefore we have to first check whether, 𝑎11 is not equal to 0. If

it is not equal to 0 then only you will go to calculate 𝑚21 and 𝑚31. And then next what we will

do is we will retain the first equation as it is, we will replace the second equation by this

expression.

What is this? We will call the first equation as 𝐸1, the second equation as 𝐸2 and the third

equation as 𝐸3 and then we will replace 𝐸2 by this equation, which is 𝐸2 −𝑚21𝐸1. Similarly,

𝐸3 is replaced by this equation that is𝐸3 −𝑚31𝐸1. This is what we have to do in step one and

that will make these terms to be 0.

(Refer Slide Time: 02:38)

And thereby you will get your reduced system like this, where the second equation and the

third equation first coefficients will be 0.

(Refer Slide Time: 02:58)

And then we will go for the second step, where we will define 𝑚32 like this. For that once again

we have to check whether 𝑎22
(2)

, what is this? this is nothing but the coefficient of 𝑥2 in the

second equation of the reduced system after step 1 that is this one. So, that you have to take

and check, whether it is non zero. If it is non-zero then only you will go further into the

algorithm, otherwise you have to stop your code.

Now, if it is non-zero then you will first find 𝑚32 and then you will go to do the elimination

process with the third equation. How will you do that? Well, for the second step you will retain

the first two equations as they are and then you will go to replace the third equation by the third

equation – 𝑚32 into the second equation that is you will multiply this equation with 𝑚32 and

then subtract with the third equation.

Recall, we still call the first equation as 𝐸1, second as now 𝐸2 and 𝐸3 and then you will replace

this new equation with the old third equation.

(Refer Slide Time: 04:22)

And thereby you will get an upper triangular matrix like this. This is what the Gaussian

elimination method does. We have already learned it in one of our previous lectures. And now

we will go to do the backward substitution process.

(Refer Slide Time: 04:40)

The elimination process is now over and we got an upper triangular matrix, which is known to

be equivalent to the given system in the sense, that the solution of the given system is the same

as the solution of the reduced upper triangular system. Now, at the end you have to go for the

back substitution. For that we first have to check whether 𝑎33 is not equal to 0. If so then you

can obtain 𝑥3 from this equation and then once you have 𝑥3 you will substitute 𝑥3 into the

second equation and get 𝑥2 here.

And once you have this is 𝑥2 and 𝑥3 then we will go to substitute them in the first equation to

get the value of 𝑥1. So, that is the back substitution process.

(Refer Slide Time: 05:57)

If you recall we have also observed that you can have a LU-factorization of our matrix a using

Gaussian elimination method, where U is nothing but the upper triangular matrix that we got

here that itself will be taken as U. And then the lower triangular matrix is formed by collecting

all the m values and arranging them in this format with all the diagonal elements as 1.

So, this is the upper triangular matrix and this is the lower triangular matrix and you can check

that A can be obtained by multiplying L into U. So, our interest is to develop a python code for

the Naive Gaussian elimination method. And we also want to get the upper triangular matrix

as well as the lower triangular matrix. Let us see how to develop the python code for this.

(Refer Slide Time: 07:12)

To save time, I have already developed the python code. I will just go to explain it here please

note that our intention here is not to develop an efficient code, but just to implement the method

into a python code. Therefore, often what we will do is we will implement the method in the

way it is explained theoretically. In that process sometime we may even lose the efficiency of

the coding part, but our intention is to learn coding as the first step.

Therefore we will often try to implement the methods just like how we have written

mathematically and explained, the same way we will try to implement it. Efficiency is all

together at different skill, which one has to develop later. Here, we will not concentrate on

developing an efficient code. This is generally followed in all the codes that we develop.

Sometimes, we may develop a code which is also efficient, but sometimes we may lose the

efficiency, just because we want to put the coding part just like how we have explained it

mathematically.

Having said that, let us come to explain the Naive Gaussian elimination code only for a 3 × 3

system. Just for an example, I have taken the system as A = [[1, 6, 1], [-2, 3, 7], [1, -8, -2]] this

is just I have chosen randomly. And I am also taking the right-hand side vector b and that is

given as [1, -6, 2]. If you want to change your matrix you just have to change this A parameter

and also if you want to change the right hand side vector you have to just change here.

(Refer Slide Time: 09:18)

And now, let us go to do the step 1. So, this is the first elimination process. Since, our interest

is to formulate the matrix L, which is the lower triangular matrix. I am just defining my all my

m parameters in the form of a matrix. Remember, this is just an idiom in python, which will

initialize a 2-dimensional array with all the entries as 0. This is very useful. You can also do it

with a pair of nested for loops, but this is often handy for us to do. You just have to remember

this format and everywhere you can copy and paste wherever you want to initialize a matrix.

Here my interest is to initialize the 3 × 3 matrix. Therefore, the parameter 3 is sitting in these

two places and then what I am doing is all the diagonal elements are initialized as 1. If you

remember in the LU factorization we want all the diagonal elements as 1. Therefore, the matrix

m, that I am defining here is basically the matrix L later I will take it as L finally. I could have

just defined it as L, but in the theory we are doing all these parameters with the notation m,

therefore I have initialized it as m and then all the diagonal elements are taken as 1.

(Refer Slide Time: 11:08)

Now for the first step, the eliminated matrix, that is the coefficient matrix of this system is what

I am calling as A1 in my code, I am just initializing my A1 here. Again it is a 3 × 3 matrix

therefore I have these parameters 3 here. If you put 4 here and 4 here you will get a 4 × 4

matrixes and so on. And all the elements of the matrix will be initialized as 0. Similarly, I am

initializing the corresponding right hand side vector b as b1.

Mathematically, we have this notation and this is what I am initializing as b1 in my code. Now,

if you recall the first equation is retained as it is. So, 𝐸1 is retained as it is we are not going to

disturb it, that is why I have taken A1[0][0] it means, what A1[0][0] is nothing but 𝑎11, if you

recall I have told in the last class that python always starts it is index from 0 and then it goes

up to n – 1.

If you have n elements in your sequence it always goes from 0 to n - 1. Therefore if you are

trying to access 𝑎11 mathematically then you should actually do A[0][0]. Perhaps we can write

it as A here. So, this is what is so suppose mathematically you have 𝑎𝑖𝑗 then in the code it is

A[i-1][j-1] is what we have to use in the code as the notation. So, that is what I am doing 𝑎11

is stored in the first element of this matrix.

And similarly this is 𝑎12 is taken as it is in the first step, 𝑎13 is taken as it is in the first step.

So, this is what here we have done. After the first elimination step, the first equation should

not be changed 𝑎11 should be as it is, 𝑎12 should be as it is and 𝑎13 should be as it is. That is

what we are doing in the code here and that finishes the first equation. Now, we have to come

for the second and third equation elimination process.

If you recall, we have to define 𝑚21 and 𝑚31. In the python notation this has to be written as

m, it is 2 therefore in python it should be 1 and the second index is 1, therefore we have to have

it as 0. Similarly, this is m[2][0]. So, that is what I am doing here m[1][0], m[2][0] and that is

𝑎21 divided by 𝑎11, similarly this is 𝑎31 divided by 𝑎11 all the index should be reduced by 1,

that you should always keep in mind, in order to adopt your mathematics to python notation,

this one thing that you have to remember.

(Refer Slide Time: 15:37)

Next is the second equation. If you remember the second equation is 𝐸2 −𝑚21𝐸1 should be

replaced by the equation 𝐸2. Therefore in the matrix A1 remember here the first element is 0

into 𝑥1. Therefore we should not touch A1[0][0], because we have already initialized the entire

A1 matrix as 0 matrix. Therefore we will not touch this element at all. We want it to be 0 we

only want to take this element mathematically we had this notation.

Now instead of this we are using the notation A1 therefore it should be A1[1][1] because this

is 2, 2, therefore in python it should be 1, 1 that is what I am writing here that is A1[1][1] =

A[1][1] - m[1][0]. Remember this is nothing but 𝑎22
(2)

 that is what we have taken as A1[1][1].

That is nothing but 𝑎22 minus that is the second equation minus 𝑚21𝑎12. If you go back you

can see this is the expression, we have defined in the method and that is implemented in this

step.

And similarly you can now put 𝑎23
(2)𝑥3, that is what we are writing here A1, instead of 2 we

have 1 here, instead of 3 we have 2 here. Therefore, this element is what we are actually trying

to compute here and that is given by this expression. You can compare it with the expression

that we have given in the method theoretically and see how it comes. Similarly, you can go to

do the third equation elimination and you can see that that is given by this expression in the

code.

(Refer Slide Time: 18:31)

So, that defines your left-hand side coefficient matrix, that is, this is the first equation then this

comes the second equation, where the first coefficient is 0 therefore we are not doing any

computation with that. Similarly, the third equation is defined here again with the first

coefficient. That is the coefficient of 𝑥1 is set as 0 automatically when we are initializing the

matrix A1.

And later we are not putting any effort to compute it, because we already know that its value

should be 0. Therefore, we just put that and we never compute that. Now comes the right-hand

side calculation that is the vector b is now changed to a new vector and the new vector is already

initialized as b1 with 0 as values. Now, we have to put the actual values in b1. Remember the

first equation is not changed.

Therefore the value in b[0] should be kept in b1 also. This is the right-hand side first coordinate

of the vector b. And now b1[1] this is nothing but the second coordinate of the right hand side

vector, after the first elimination process. You can go back theoretically and see what is the

expression for that and come back and try to understand its corresponding notation in the

python code, you will clearly see that this is the notation that needs to be written.

Similarly, the third equations hand side is given like this. So, with this we have completely

calculated the reduced system at the step 1. Now let us go to do the step 2. For step 2, if you

recall what we have to do, we have to first check whether this 𝑎22
(2)

 that should not be equal to

0 if that is so, then we will go to calculate 𝑚32. Let us see how to do that. Well here also in the

step 1 we have checked whether 𝑎11 is not equal to 0, only when 𝑎11 is not equal to 0 we will

do this calculation.

(Refer Slide Time: 21:07)

If not what we will do we will simply put a warning command that Naive Gaussian elimination

method failed, because of A[0][0] is 0. And then I have defined a variable indicator at the

beginning of this code, if you go back, you can see I have initialized it as 1, that is, just as an

indicator I will see whether I have encountered this 0 element anywhere in my steps. Anywhere

it encounters then it will just put indicator as 0, it means the Gaussian elimination method is

already failed.

And then it comes to the second step if the first step was successful then my initialized value

of indicator will be there, which is 1. Now it will take as 1 here, this if condition will allow the

control to go into it when this indicator carries any non-zero value. If it carries zero value then

it will not get into this if condition. So, in the first step if the Naive Gaussian elimination method

failed, then indicator is 0 therefore this will not be executed, otherwise it will carry the value 1

from the initialized level and therefore this if condition will be executed.

(Refer Slide Time: 22:43)

If this if condition is executed let us see what happens. Again, you will initialize the matrix A2

which is our final tri-diagonal matrix, because we are working with 3 × 3 system. Therefore,

we will only go up to two steps. So, we will be finishing our Gaussian elimination method with

the second step. Therefore, this A2 will be our final upper triangular matrix. At the beginning

of this step, I am initializing it as a 3 ×3 zero matrix and I am also initializing the right hand

side vector b2, when I know already that the first two coefficients of b2 will not be changed.

In fact, I can put it at the initialization level itself and then keep the third coordinate as 0 and

later I will fill it up with the corresponding value. Now, the first two equations will not be

changed at all when compared to the previous step. Therefore, the first equation is not changed

right from the given equation. Therefore, I am taking the first equation same as the given first

equation. The second equation is not changed from the step 1.

Therefore, the second equation is just taken from the A1 matrix, because A1 is formulated at

step 1. And now for third equation we have to do the elimination process. For that I have to

check whether A1[1][1] that is 𝑎22, this is 𝑎22
(2)

. That is what we have called as A1[1][1]. That

should not be equal to 0. This is what we are checking theoretically and I am doing it here. If

it is not equal to 0 then I will go to find 𝑚32.

In python it should be m[2][1], 1 less always and that is given by this. And then in the third

equation remember the first one will be 0𝑥1, which is eliminated in the first step. Now in the

present step we are also eliminating the coefficient of 𝑥2. So, when we know that this is 0, as

usual we will not put any effort to compute it. It is already initialized in this step itself as 0. So,

we will retain it as it is plus 𝑎33
(3)

. This is what we will be now computing here and similarly

equal to 𝑏3
(3)

 and that is computed here.

You can go back to the expressions given theoretically and see how we have written this. And

once you have it then finally we are having our upper triangular matrix. Now, you have to go

for the back substitution process.

(Refer Slide Time: 25:54)

Well if you recall again the back substitution should come only when you have successfully

computed both the steps. Therefore, you will again check whether the indicator is still holding

the value 1, because if any of the steps failed then your control would output indicator as 0 and

therefore it would have switched off the process. And that is taken care here if the indicator is

0 it will never get into this if condition.

If indicator is 1 then only it will get into this or any non-zero for that matter, in our case it is 1.

Once it comes in then you have to again check whether 𝑎33
(3)

 is non-zero that is what we have

to check. That is what I am doing in the code I am checking whether A2[2][2] is not equal to

0. If it is not equal to 0, then I will do the back substitution process. Here, instead of typing the

back substitution code what I did is I have separately defined it as a function. In python, if you

know that you are going to use a set of lines repeatedly in many codes, then it is better to put it

as a separate function and call that function into your program wherever it is needed.

(Refer Slide Time: 27:31)

What I did here is? I have made this back substitution as a separate code. I have written it in

the form of a function. How to do that? Well, that can be done with this command define a

function, the function name is back substitution and what are all the parameters that I have to

supply into this function. These are the upper triangular matrix and the right hand side vector.

So, I am passing these two information into this function.

(Refer Slide Time: 28:27)

And what that function does is it initializes a vector x as [0, 0, 0] and then 𝑥3 is what is denoted

as x[2] here. And what is 𝑥3 theoretically if you see 𝑥3 is obtained as
𝑏3

𝑎33
. That is what we are

doing here, 𝑥3 is
𝑏3

𝑢33
. Now, I have captured this matrix as U, therefore I have to use the notation

U here. Similarly, 𝑥2 you can compare the theoretical expression and see how it comes and 𝑥1

theoretically here it is x[0] and its expression is given like this. Once it computes 𝑥1, 𝑥2 and 𝑥3

it returns the value x.

(Refer Slide Time: 29:11)

And now we have to get back that value into our original program. Remember we have

computed A2 and b2 from step 2. That I am pausing it into the function back substitution and

got the value x back from the back substitution and that is going to be my solution. Again, at

this level if the diagonal element of the third equation is 0 then I should not do the back

substitution process. That is taken care of by this if condition.

(Refer Slide Time: 29:59)

Then the rest all are the print commands that is I am printing the output in all these commands.

Let us try to see how this program runs for that I have to click this play button, it will take some

time it has ah initialized some memory for us in the cloud machine and it has run the code.

(Video Starts: 30:19) You can see that the code has run successfully. This is the A matrix that

I have given and this is the b matrix I have given.

And what is the solution? The solution is given like this. So, I am just printing the solution

somewhere here, see I am I am printing the solution here and that is printed here the solution

is given by this. (Video Ends: 30:44)

(Refer Slide Time: 30:45)

Now, I am also saving the matrix U, what is my matrix U? Here I am printing the matrix U,

the matrix U is nothing but A2 in my program. So, I am printing it here, similarly the matrix L

is printed here and that is nothing but m in my program notation. So, that is what you can see

in the output.

(Refer Slide Time: 31:12)

So, L is given like this and U is given like this. I am also checking whether L into U is giving

back my A, you can also check that L into U is precisely the A that we have taken.

(Refer Slide Time: 31:37)

You can see that I am just doing this at this level. This is nothing but the matrix multiplication

of L into U. So, that exactly as what we want is given here and that completes the code for the

Gaussian elimination method. I hope you have understood.

(Refer Slide Time: 31:48)

One thing is when you run the program, before running the main Gaussian elimination program

you have to once run this function back substitution, otherwise the main program will give you

an error message. With this we will end this class. Thank you for your attention.

