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Hi, we are learning direct methods for solving non-singular linear systems. Recall, the direct 

methods give exact solution to a linear system when there is no rounding error involved in it. We 

have learned Gaussian elimination method, Doolittle factorization method and Crout factorization 

method in our last class. In this class we will learn another LU factorization method called 

Cholesky’s factorization. 
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A matrix A is said to have a Cholesky’s factorization if there exists a lower triangular matrix L 

such that A can be written as 𝐿𝐿𝑇. Observe that if L is a lower triangular matrix then 𝐿𝑇 is an upper 

triangular matrix therefore this form of factorization is indeed a LU factorization. Also you can 

observe that the right hand side matrix is a symmetric matrix because we have 𝐿𝐿𝑇 therefore if you 

take the transpose of that you again get 𝐿𝐿𝑇. 

 

Therefore Cholesky's factorization is possible only for symmetric matrices. Also we will see that 

Cholesky’s factorization exist if the matrix A is a positive definite matrix. Let us recall from our 



linear algebra course what is mean by a positive definite matrix? A symmetric matrix A is said to 

be positive definite if 𝑥𝑇𝐴𝑥 is positive for all non-zero vectors x. You can see from this definition 

that it is not that easy for us to check whether a given symmetric matrix is positive definite or not. 

 

For that you have to take all the non-zero vectors and compute the expression 𝑥𝑇𝐴𝑥   and check if 

it is a positive number that seems to be very difficult. 
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Therefore we have some equivalent properties which we would have studied in our linear algebra 

course. Here we will just recall those properties in the form of a lemma, suppose we have a 

symmetric 𝑛 × 𝑛 matrix A, then we say that A is positive definite. If and only if all it is principal 

minors are positive, that is one equivalent condition for positive definiteness. You can see that 

principal minors can be computed relatively in a easy way. 

 

Therefore this condition is more handy for us to check whether a symmetric matrix is positive 

definite or not. Another equivalent condition is that a symmetric matrix A is positive definite if 

and only if all the Eigen values of A are positive. Again this can also be checked, well, finding 

Eigen values is little difficult computationally than finding principal minors however this can also 

be checked. 

 



We will not get into the proof of this lemma because it is a part of linear algebra course but we 

will use these properties in our theorem on existence and uniqueness of Cholesky’s factorization. 
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The theorem says that suppose you have an 𝑛 × 𝑛 matrix with real entries, note that we will always 

work with matrices of real entries. Therefore even if I do not tell this you should keep in mind that 

we always work with matrices with real entries. So, we have a matrix 𝑛 × 𝑛 such that it is a 

symmetric matrix and also it is positive definite. Then we can always find a lower triangular matrix 

L such that you can write 𝐴 = 𝐿𝐿𝑇. 

 

Moreover if all the diagonal elements of this lower triangular matrix L are positive then we can 

say that that is the only lower triangular matrix such that 𝐴 = 𝐿𝐿𝑇. That is, we get a unique 

Cholesky’s factorization. So, when we say Cholesky’s factorization it means finding the lower 

triangular matrix L such that 𝐴 = 𝐿𝐿𝑇. We are imposing this condition that is positive diagonal 

elements is just to make sure that we have a unique way of obtaining the matrix L. 

 

In our computation you will see that all the diagonal elements of the matrix L will appear as 𝑙𝑖𝑖 

square some number. Therefore when you take square root you get 𝑙𝑖𝑖 = square root of that number 

therefore you may have plus or minus also. So, you have 2 choices here, to be very specific we 

will always make our mind that we will choose the positive sign for those diagonal elements. 

 



This is just to make the algorithm more precise without any ambiguity of what sign we have to 

choose. And in that way the theorem says that you will have a unique such matrix L that is what 

the statement is. Let us try to prove this theorem. 
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The proof is by induction. It means you first prove the theorem for the matrix A which is a 1 × 1 

matrix. Then you assume that the factorization is possible for a  𝑘 × 𝑘 matrix and then prove it for 

(𝑘 + 1) × (𝑘 + 1) matrix. If you do so already you have proved it for 1 × 1 matrix therefore it is 

true for 2 × 2. Once it is true for 2 × 2 matrix then it is true for 3 × 3 matrix and so on, so that is 

the idea of induction. 
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Therefore the first step is to prove that a unique factorization is possible when A is a 1 × 1 matrix. 

Let us take A as 𝑎11, then obviously you can choose 𝐿 = √𝑎11. Then you can see that A can be 

written as 𝐿𝐿𝑇. Of course you can also choose −√𝑎11 but just because we made our mind to pick 

only the positive sign we will have +√𝑎11 here. Otherwise you can as well take minus here; there 

is nothing wrong in that. 

 

Therefore the Cholesky’s factorization is true when the matrix A is a 1 × 1 positive definite matrix. 

It means 𝑎11 should be positive, that is how we are getting a real matrix L. Remember, that L 

should be a lower triangular matrix with all its entries as real numbers, then only we will declare 

that Cholesky’s factorization exists. 
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Now we will fix our induction hypothesis, as per that we will assume that the Cholesky’s 

factorization holds for any 𝑘 × 𝑘 matrix for some natural number k. So, we are taking a k and then 

we are assuming that if A happens to be a 𝑘 × 𝑘 matrix then you can always find a 𝐿𝑘 such that A 

can be written as 𝐿𝑘𝐿𝑘
𝑇 , unique such 𝐿𝑘 will exist with all it is diagonal elements as positive. 

 

That is the assumption we are making, as per the induction method what we have to prove? If we 

have a matrix which is (𝑘 + 1) × (𝑘 + 1) matrix then we have to prove that the Cholesky’s 

factorization exists. 
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So, let us assume that A is a (𝑘 + 1) × (𝑘 + 1) symmetric positive definite matrix. Now we have 

to find the L such that 𝐴 = 𝐿𝐿𝑇. Remember, we have assumed that the Cholesky’s factorization 

exist for any 𝑘 × 𝑘. Therefore what we will do is? We will write our matrix A as 𝐴𝑘 which is the 

principal sub matrix of order k for A and then we will write the remaining column vector as a and 

it is transpose as 𝑎𝑇 and then the last diagonal element like this. 

 

Just to visualize let us take a 3 × 3 matrix as (

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

). So, here 𝑘 + 1 = 3 we have taken 

in this example, therefore our k is 2. So, 𝐴𝑘 should be the principal sub matrix of A of order 2, it 

means it should be this matrix, this is your 𝐴2 here and then your column vector 𝑎 is taken as this, 

this is your a. In all our discussions in this chapter we will always take a vector as a column vector. 

 

Therefore its transpose that is the row vector will always be written as 𝐴𝑇. So, this is what is a 

transpose, remember it is a symmetric matrix. Therefore this and this will be the same and this and 

this will be the same, that is 𝑎31 will be equal to 𝑎13 and 𝑎32 = 𝑎23 and then you have this element 

sitting here. So, this is how we are just splitting A into block wise. 
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Where A is the 𝑘 × 𝑘 principal sub matrix of A and this vector a is the column vector at the last 

column removing the diagonal element that is 𝑎(𝑘+1)(𝑘+1). You can observe that A is a symmetric 

matrix therefore 𝐴𝑘 is also a symmetric matrix. Also you can see that 𝐴𝑘 is a positive definite 

matrix because A is positive definite by our lemma all it is principal minors are positive. In 

particular, the principal minors of 𝐴𝑘 are also principal minors of A with lower orders. Therefore 

they all are also positive, in turn 𝐴𝑘 is also a positive definite matrix, this is an observation. 

 

Therefore by our induction hypothesis you can find the Cholesky’s factorization for 𝐴𝑘, that is you 

can find a unique lower triangular matrix 𝐿𝑘 such that 𝐴𝑘 = 𝐿𝑘𝐿𝑘
𝑇 , where all the diagonal elements 

of 𝐿𝑘 are positive. This is the assumption as per our induction hypothesis. Now let us see how to 

construct the Cholesky’s factorization for A with the help of the Cholesky’s factorization of 𝐴𝑘. 
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Let us propose that the Cholesky’s factorization of A looks like this matrix, where 𝐿𝑘 is coming 

from our Cholesky’s factorization of 𝐴𝑘 and then all these elements are 0 because it is a lower 

triangular matrix. And you have a vector 𝑙 which is written in the row form therefore it is 𝑙𝑇 and 

then this is a number 𝑙(𝑘+1)(𝑘+1). Now here we know this, this is known to us as per our induction 

hypothesis therefore we do not need to compute that. 

 

But we need to compute the vector l and the real number 𝑙(𝑘+1)(𝑘+1), how we have to find that? 

We should find these quantities in such a way that 𝐴 = 𝐿𝐿𝑇, so that is our Cholesky’s factorization. 

So, we have to find this vector and this real number. How are we going to find this? Let us see, 

well, what we can do is? You take this the first block of the matrix L this is the row block and 

multiply it with the last column of 𝐿𝑇. 
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That will give you 𝐿𝑘𝑙 is equal to we have to compare that with the corresponding entries of the 

left hand side matrix which happens to be the vector a. So, the vector a is known to us and therefore 

we got a lower triangular system with solution as the unknown vector l. Now how will you find 

it? 
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Well, you can just use the forward substitution to get the vector l because 𝐿𝑘 is a lower triangular 

matrix, you do not need to go for any elimination process. You can simply use the forward 

substitution to get the vector 𝑙 provided the matrix 𝐿𝑘 is invertible. How do we know that the 



matrix 𝐿𝑘 is invertible? Well, you can see that from the way we have constructed 𝐿𝑘. We have 

constructed 𝐿𝑘 such that 𝐴𝑘 = 𝐿𝑘𝐿𝑘
𝑇 . 

 

Now you take the determinant on both sides you have 𝑑𝑒𝑡(𝐴𝑘) = 𝑑𝑒𝑡(𝐿𝑘)2. But this is positive 

because A is a positive definite matrix therefore this is surely non-zero that is what we can see 

from the way 𝐿𝑘 was computed. Therefore 𝐿𝑘 is an invertible matrix, so you will get a unique 

vector 𝑙 such that 𝐿𝑘𝑙 = 𝑎 which is a known quantity. So, we obtained this vector l, now we need 

to only find this real number that is the only part left out for us. 
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Let us see how to find that. Again what we will do is, you take the last row of L and multiply it 

with the last column of 𝐿𝑇. That gives us the vector 𝑙𝑇𝑙 + 𝑙(𝑘+1)(𝑘+1)
2  and that needs to be compared 

with the corresponding element of the matrix A and that is going to be 𝑎(𝑘+1)(𝑘+1). Now that gives 

us 𝑙(𝑘+1)(𝑘+1)
2 = 𝑎(𝑘+1)(𝑘+1) − 𝑙𝑇𝑙. Now from here you may take 𝑙(𝑘+1)(𝑘+1) =

+√𝑎(𝑘+1)(𝑘+1) − 𝑙𝑇𝑙. 

 

Of course you have to have plus or minus but we have already made our mind that we will take 

only the positive sign therefore I will take here only positive sign. But then the question is, is this 

real? In other words we have to first justify that is this greater than 0? That is the question because 

remember in order to say that the Cholesky’s factorization exist we have to find a lower triangular 

matrix with all it is entries as real numbers. 



 

Therefore this number should also be a real number but it need not be because if this number 

happens to be negative then you will have 𝑙(𝑘+1)(𝑘+1) as a imaginary number. Therefore you have 

to justify this, how will you justify it? Well, again go back to the form that we are writing, you 

take 𝑑𝑒𝑡(𝐴) = 𝑑𝑒𝑡(𝐿)𝑑𝑒𝑡(𝐿𝑇) which is nothing but (𝑑𝑒𝑡 (𝐿))2. 

 

What is 𝑑𝑒𝑡(𝐿)? 𝑑𝑒𝑡(𝐿) = 𝑑𝑒𝑡(𝐿𝑘)𝑙(𝑘+1)(𝑘+1) and that square means, this is square and square. 

Now determinant of A is nothing but the product of all it is Eigen values. Therefore you can say 

that the product of all the Eigen values of A is equal to, this is a positive number because we already 

know that 𝐿𝑘 exists it means all it is entries are real that is already assumed. 

 

Therefore this is a positive number and this is what we do not know whether it is positive or not. 

Now you can see that all the Eigen values of A are positive, why? Because A is a positive definite 

matrix, so we have stated one equivalent property of positive definite matrix in the last lemma that 

all it is eigenvalues are positive. Therefore the left hand side is the product of positive numbers 

therefore it is positive. 

 

That shows that 𝑙(𝑘+1)(𝑘+1)
2  is a positive number, remember just because you are squaring this does 

not mean it is positive. Say for instance if 𝑙(𝑘+1)(𝑘+1) = 𝑖 then it is square is -1, therefore you just 

cannot directly say that this is a positive number. You have to justify this because we have not yet 

proved the existence of Cholesky’s factorization. In fact that is what we are trying to justify that 

this is positive and that comes from this representation. 

 

Therefore we have proved that this is positive and that implies that 𝑙(𝑘+1)(𝑘+1) is a real number and 

that proves the Cholesky’s factorization exists. And also you can see the way we have constructed 

that the Cholesky’s factorization is unique, why? Because from the induction hypothesis 𝐿𝑘 is 

unique and then this system has a unique solution l and then finally this also is a unique 

representation. 

 

Therefore with all this we can see that our Cholesky’s factorization is unique, provided that all the 

diagonal elements sign are fixed as a unique sign either it should be positive or negative. You can 



see that at every stage of induction you are taking the square root for getting the diagonal element. 

There you have 2 choices; you may go for a plus sign or minus sign, so we made our mind to take 

only the plus sign in all the steps. 

 

In that way we have a unique factorization that you have to keep in mind, there is nothing wrong 

in taking minus in all the steps also that gives a different Cholesky’s factorization. Therefore as 

such Cholesky’s factorization is not unique but if you fix the diagonal element’s sign then it is 

unique. 
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Let us take an example. Let us take the matrix A as given like this, you can observe directly that it 

is a symmetric matrix, also you can see that it is positive definite, how will you do that? One easy 

way out is to check all it is principal minors are positive. The principal minors of order 1 is 9 for 

this matrix, that is positive, the principal minor of order 2 is 9 × 2 - 9, that is again 9, that is also 

positive and you can also see the determinant of A is positive. 

 

Therefore this is a symmetric and positive definite matrix. Therefore we can find a unique 

Cholesky’s factorization with all the diagonal elements being positive, let us see how to compute 

that. There are many ways to compute but we will just follow the construction procedure we 

adopted in the previous theorems proof and try to construct the Cholesky’s factorization for this 

matrix. For that we have to first compute 𝐿1, what is 𝐴1? 
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𝐴1 is nothing but 9 therefore 𝐿1 can be taken as 3 or -3, again I am emphasizing we will always 

take the positive sign therefore we are taking 𝐿1 as 3. So, with that we will go to find what is 𝐿2? 

For that we will write 𝐿2 = (
𝐿1 0
𝑙21 𝑙22

), 𝐿1 is 3 therefore it is (
3 0

𝑙21 𝑙22
), we have to find what is 

𝑙21 and 𝑙22? Such that 𝐴2 which is nothing but (
9 3
3 2

) = (
3 0

𝑙21 𝑙22
) (

3 𝑙11

0 𝑙22
). 

 

And that is going to be equal to 3𝑙21 = 3, that implies 𝑙_21} = 1 similarly 𝑙21
2 + 𝑙22

2 = 2 that will 

again imply that this is going to be 𝑙22
2 = 1 or 𝑙22 = 1. Again remember whenever there is a 

diagonal element we will always get it in terms of the square of that element and then when you 

take the square root we will always take the positive sign and that gives us 𝐿2 = (
3 0
1 1

). 
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Let us now compute 𝐿3 which is also the required Cholesky’s factorization. For that we will take 

𝐿 = (
𝐿2 0

𝑙𝑇 𝑙33
). That gives us 𝐴 = (

𝐿2 0

𝑙𝑇 𝑙33
) and then it is transpose, that is (

𝐿2
𝑇 𝑙

0𝑇 𝑙33

). When 

you take the first block row with the last column here we get 𝐿2𝑙 is equal to this vector(
−2
3

), that 

gives us 𝑙31. So, remember this is 𝑙31, 𝑙32 and 𝑙33. 𝑙31 = −2/3 and 𝑙32 = 11/3, so that is what we 

have here. 

 

This is our 𝐿2 and this is the 0 vector and we have 𝑙𝑇 here, now we have to find the diagonal 

element 𝑙33. For that we will multiply this with the last column of 𝑙𝑇 that gives us 𝑙𝑇𝑙 + 𝑙33
2 = 23. 

That gives us 𝑙33
2 = 23 − (4/9 + 121/9) and that 9 into 23 minus this is going to be 82 / 9. And 

therefore if you take the square root on both sides and choose the positive sign we will have 𝑙33 =

√82

3
. And that gives us the Cholesky’s factorization for the matrix A given like this. 
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This is not the only way to compute Cholesky’s factorization. Recall, in the Doolittle case we 

computed the Doolittle factorization by direct comparison. What we did? We wrote 𝐴 = 𝐿𝐿𝑇, of 

course in Doolittle all the diagonal elements of L are 1. So, you have to write such an L and then 

find the other entries of L as well as U. So, in fact this was U there in the Doolittle factorization 

but here in Cholesky’s factorization we have to take it as 𝐿𝑇 itself. 

 

Now just like how we did with Doolittle factorization, what we did? The right hand side product 

of 2 matrices we just multiplied them and then compare the elements of the right hand side matrix 

with the corresponding elements of the left hand side matrix and we got all the elements of L and 

U there. The same idea can be followed in constructing Cholesky’s factorization also, you need 

not go step by step as we did in the last computation. 

 

This is to make the proof of the theorem more rigorous; we used it in the form of an induction. 

Otherwise you can also go for a direct comparison calculation which will also lead to a very 

efficient algorithm. 
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Let us see how these expressions look like. Well, 𝑙11 can be directly obtained as √𝑎11, remember 

again we are fixing our sign as plus, that is why we got it otherwise you can also take −√𝑎11. Now 

𝑙22 is obtained by multiplying this row of L with this column of 𝐿𝑇 and that gives 𝑙22 as this. 
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Similarly to get 𝑙33 you can multiply this with this and that gives you 𝑙33. All the diagonal elements 

are therefore obtained. In general if your matrix is a 𝑛 × 𝑛 matrix, you can just look at these 

expressions and try to generalize how this expression will look like for a 𝑛 × 𝑛 matrix. That will 

be given as 𝑙𝑖𝑖 = root 𝑎𝑖𝑖 minus you have the sum starting from k = 1 and goes up to i – 1. 

 



So, here it is 3 therefore it goes up to 2, similarly if you are computing the diagonal element at the 

ith row it goes up to 𝑖 − 1. Because i is already there that is what you are computing, 𝑖 + 1 onwards 

the entries are 0 because it is a lower triangular matrix. Therefore this will go only up to 𝑖 − 1. So, 

therefore the diagonal elements are given by this expression, how the non diagonal elements are 

obtained? 
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Again let us see, to get this element you can just multiply this row with the first column of 𝐿𝑇 and 

that gives you 𝑙21. 𝑙31 we have to find. For that you take this and again you do multiplication with 

the first column of 𝐿𝑇 this gives you 𝑙31. And how will you get 𝑙32? Well, you multiply this with 

the second column and that gives you 𝑙32 again you can just observe the expression and try to 

generalize it for any 𝑛 × 𝑛 symmetric positive definite matrix A and that gives you this expression. 

 

Remember, this has to go for each column other than the diagonal element. All the elements after 

diagonal elements are also not computed. Therefore j should go from 1, 2 up to 𝑖 − 1 and this has 

to be done for all the rows therefore the row index i should go from 1 to n. So, this way also you 

can compute Cholesky’s factorization. So, since we are working with symmetric matrix. 

 

Cholesky’s factorization is more efficient than Gaussian elimination and the Doolittle or Crout 

factorization. Because we are making use of the property that A is a symmetric matrix therefore 

you are only computing L, you are not computing U explicitly. In that way you gain lot of 



computational time. Now how to compare 2 methods in terms of their computational time? Well, 

that can be done by counting the number of arithmetic operations involved in these methods. 

 

In the next class we will compare Cholesky’s factorization with Gaussian elimination method and 

see which method is more efficient in terms of the computational time. Well, that will be in terms 

of how many arithmetic operations are involved in them, this we will do in the next class. Thank 

you for your attention. 


