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Theorem (Bessel’s inequality): If a0, an, bn (n = 1, 2, . . . ) are the Fourier coefficients of a function
f ∈ L2[−π, π] we have the following inequality:

|a0|2 +
1

2

∞∑
n=1

(|an|2 + |bn|2) ≤
1

2π

∫ π

−π

|f(x)|2dx (2.4)

Proof: We have already seen that 1, cosx, sinx, . . . , cosNx, sinNx are orthogonal to f(x) − SN(f, x)
whereby we conclude their linear combination SN(f, x) is also orthogonal to f(x) − SN(f, x). The
Pythagorous identity now gives:

∥f(x)− SN(f, x)∥2 + ∥SN(f, x)∥2 = ∥f∥2 (2.5)

Hence
∥SN(f, x)∥2 ≤ ∥f∥2 (2.6)

We now compute

∥SN(f, x)∥2 =

∫ π

−π

|a0 +
N∑
j=1

(aj cos jx+ bj sin jx)|2dx

= 2π|a0|2 + π
N∑
j=1

(|aj|2 + |bj|2)

So the inequality ∥SN(f, x)∥2 ≤ ∥f∥2 translates to

|a0|2 +
1

2

N∑
n=1

(|an|2 + |bn|2) ≤
1

2π

∫ π

−π

|f(x)|2dx

Letting N −→ ∞ we get the result.

The Parseval formula It turns out that the Bessel’s inequality is actually an equality!

Theorem: Suppose f ∈ L2[−π, π] then

1

2π

∫ π

−π

|f(x)|2dx = |a0|2 +
1

2

∞∑
n=1

(|an|2 + |bn|2). (2.7)

Formula (2.7) has a simple physical interpretation. If we think of f(x) as a 2π−periodic signal, the
left hand side represents the energy of the signal while the right hand side spells out the contribution
from each of the Fourier components of the signal.

Proof of (2.7) is technical and we shall return to it later after proving Fejer’s theorem. Instead
we look at a couple of simple examples.
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Examples on Parseval Formula: Consider the function f(x) = x2 on [−π, π] extended over R as
a 2π−periodic function. Let us compute the Fourier coefficients of this function.

a0 =
1

2π

∫ π

−π

x2dx =
1

π

∫ π

0

x2dx =
π2

3

Obviously bn = 0 and we have for an,

an =
2

π

∫ π

0

x2 cosnxdx =
2

nπ

∫ π

0

x2d(sinnx)

dx
dx =

−4

nπ

∫ π

0

x sinnxdx

One more integration by parts gives:

an =
4(−1)n

n2

Parseval’s formula now gives:
1

2π

∫ π

−π

x4dx =
π4

9
+

1

2

∞∑
n=1

16

n4

which after simplification gives the formula

ζ(4) = 1 +
1

24
+

1

34
+ · · · = π4

90
.

If you have worked out the exercises in the previous module you would have obtained

1 +
1

32
+

1

52
+ · · · = π2

8
.

Exercise: Show that ζ(2) = 1 +
1

22
+

1

32
+ · · · = π2

6
.

Bernoulli polynomials and Bernoulli numbers To describe the values of the zeta function ζ(2k)
for k = 1, 2, 3, . . . we need to introduce the Bernoulli numbers. Define inductively the sequence of
polynomials Bn(x) as

B0(x) = 1

B′
n(x) = nBn−1(x), n ≥ 1∫ 1

0

Bn(x)dx = 0

The polynomials Bn(x) are called the Bernoulli polynomials.

Exercise: Calculate the first few Bernoulli polynomials. The numbers Bn(0) are called Bernoulli
numbers.
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Some classical formulas (James Bernoulli - Ars Conjectandi (1713)):

1p + 2p + · · ·+ np =
1

n+ 1
(Bp+1(n+ 1)−Bp+1(0)), p = 1, 2, 3, . . .

L. Euler:

ζ(2p) = 1 +
1

22p
+

1

32p
+ · · · = (−1)p+1(2π)2pB2p(0)

2 · (2p)!
, p = 1, 2, 3, . . . (2.8)

James and John Bernoulli tried in vain to obtain the latter for p = 1. It was discovered by Euler in
1736. However James Bernoulli did not live to see the last displayed formula in which the numbers
that bear his name feature so prominently.

Exercise: Use x(π2 − x2) to find the value of

ζ(6) = 1 +
1

26
+

1

36
+ . . .

Is your result in agreement with (2.8)?

Descarte’s isoperimetric problem

This is one more important classic variational principle which goes back at least to René Descartes:

Theorem: Of all piecewise smooth closed curves with a given perimeter the circle encloses maximum
area.

One can turn the problem around by fixing the area and minimizing the perimeter.

Theorem: Of all piecewise smooth closed curves enclosing a given area the circle has the least
perimeter.

The theorem generalizes to higher dimensions in an obvious way.

Spacial isoperimetric theorem “With a little knowledge of the physics of surface tension, we could
learn the isoperimetric theorem from a soap bubble.

Yet even if we are ignorant of serious physics, we can be led to the isoperimetric theorem by quite primitive

considerations. We can learn it from a cat. I think you have seen what a cat does when he prepares himself

for sleeping through a cold night: he pulls in his legs, curls up, and, in short, makes his body as spherical as

possible. He does so obviously, to keep warm, to minimize the heat escaping through the surface of his body.

The cat who has no intension of decreasing his volume, tries to decrease his surface. He solves the problem

of a body with a given volume and minimum surface in making himself as spherical as possible. He seems to

have some knowledge of the isoperimetric theorem.” Quotation from p. 170 of G. Polya, Mathematics
and plausible reasoning, Princeton University Press, Princeton, 1954.

Theorem (Hurwitz’ Proof of isoperimetric theorem (1902)): Let the piecewise smooth closed
curve be parametrized by arc-length (x(s), y(s)), 0 ≤ s ≤ L and the curve is traced counter-clockwise.
The area A is given by

A =

∮
xdy =

∫ L

0

x
dy

ds
ds (How?)

4



Let t = (2πs/L)− π so that t runs over the interval [−π, π]. Then

A =

∫ π

−π

x
dy

dt
dt (2.9)

For the perimeter we have (dx
dt

)2

+
(dy
dt

)2

=
(ds
dt

)2

=
L2

4π2
.

which is conveniently rewritten as

1

2π

∫ π

−π

{(dx
dt

)2

+
(dy
dt

)2}
dt =

L2

4π2
. (2.10)

We now apply the Parseval’s formula to (2.9) and (2.10). Let the n−th Fourier coefficients of x(t) be
an, bn and those of y(t) be cn, dn. For the area integral we get

A = π
∞∑
n=1

n(andn − bncn).

For second,

L2 = 2π2

∞∑
n=1

n2(a2n + b2n + c2n + d2n)

Thus we see

L2 − 4πA = 2π2

∞∑
n=1

{
n2(a2n + b2n + c2n + d2n)− 2n(andn − bncn)

}
= 2π2

∞∑
n=1

{
(nan − dn)

2 + (nbn + cn)
2 + (n2 − 1)(c2n + d2n)

}

Thus
L2 ≥ 4πA

and the maximum value of the enclosed area equals L2/4π. To determine the curve that achieves this,
equality must hold which is so if and only if

nan − dn = nbn + cn = cn = dn = 0, n = 2, 3, . . .

and a1 = d1, b1 = −c1. Thus

x(t) = a0 + a1 cos t+ b1 sin t, y(t) = c0 − b1 cos t+ a1 sin t.

which represents a circle. The proof is complete.
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