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In this chapter we shall discuss two themes:

(1) Convergence in mean. We shall introduce the appropriate function space and cover the requisite
preliminaries. We shall discuss two applications of the Parseval formula:

• Hurwitz’s proof of the isoperimetric theorem .

• Proof of the maximum modulus theorem in complex analysis.

(2) Abel summability and the Poisson kernel with applications to the Laplace equation on a disc
and the heat equation.

The function space Lp[a, b]. We now come to the second mode of convergence namely convergence
in mean. However let is first recall some rudiments of Lebesgue theory. It is essential use Lebesgue
intgerals and we shall work with the Lebesgue measure on intervals in the real line. Let I be an
interval on the real line. For 1 ≤ p < ∞, we shall denote by Lp(I) the set of all measurable functions
on I such that ∫

I

|f(x)|pdx < ∞.

and on Lp(I) we have the norm

∥f∥p =
(∫

I

|f(t)|pdt
)1/p

Remark: With this norm Lp(I) is a Banach Space . We also have the space L∞(I) but we shall
make very little use of it and so we shall not recall it right now. All we need in this chapter is the
case p = 2 and for bounded intervals mainly [−π, π]. If g : [a, b] −→ R is an integrable function, its L2

norm is

∥g∥ =
(∫ b

a

|g(t)|2dt
)1/2

. (2.1)

However the integral (2.1) may be +∞. For instance g(x) = 1/
√
x is integrable on [0, 1] but the

integral of |g(x)|2 over [0, 1] is infinite. Thus /
√
x is integrable on [0, 1] but not square integrable. So

we see that L1[a, b] and L2[a, b] are distinct. Show that if −∞ < a < b < ∞ then

L2[a, b] ⊂ L1[a, b].

In particular for the interval [−π, π] every function in L2[−π, π] has a Fourier series. We wish to study
the convergence of the partial sums with respect to the L2-norm.

The space L2[a, b] The space of all functions g : [a, b] −→ R for which the integral (2.1) is finite is
denoted by L2[a, b] and it is a vector space. It is evident that if f ∈ L2[a, b] then cf ∈ L2[a, b] for every
scalar c. We need to prove that if f and g are square integrable then f + g is also square integrable.
This is easy:

|f(x) + g(x)|2 ≤ (|f(x)|+ |g(x)|)2

≤ |f(x)|2 + |g(x)|2 + 2|f(x)||g(x)|
≤ |f(x)|2 + |g(x)|2 + (|f(x)|2 + |g(x)|2)
≤ 2(|f(x)|2 + |g(x)|2)
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From this it follows at once that |f +g| is in L2[a, b] completing the verification that L2[a, b] is a vector
space. The vector space L2[a, b] has a very important property that we now spell out.

Theorem (Cauchy completeness of Lp[a, b]): L2[a, b] is Cauchy complete with resect to (2.1).
Let us recall what the last clause means. If (gn) is a sequence of functions such that

∥gn − gm∥ −→ 0 as m,n → ∞

then there is a g ∈ L2[a, b] such that ∥gn − g∥ −→ 0 as n → ∞.
We shall not prove the theorem since it is quite standard in analysis courses. See for instance the

book of Goffman and Pedrick - Functional Analysis.

Trouble with continuous functions! Note that if g : [a, b] −→ R is continuous then obviously the
integral (2.1) is finite. In other words C[a, b] ⊂ L2[a, b].

However there is a sequence (gn) of continuous functions on [a, b] such that

∥gn − gm∥ −→ 0 as m,n → ∞

but there is NO continuous function g such that

∥gn − g∥ −→ 0 as n → ∞

In otherwords C[a, b] is NOT Cauchy complete with respect to the norm ∥g∥ defined by (2.1). Cauchy
completeness is ESSENTIAL for many important existence results in analysis.

L2[a, b] is an innerproduct space On L2[a, b] we define an innerproduct as follows:

⟨f, g⟩ =
∫ b

a

f(t)g(t)dt (2.2)

If we work with complex valued functions we put a bar on the factor g(t) where the bar signifies
complex conjugation. Observe that ∥g∥2 = ⟨g, g⟩.

Exercises: (i) Prove the parallelogram law: ∥f + g∥2 + ∥f − g∥2 = 2(∥f∥2 + ∥g∥2)
We say that f and g are orthogonal if ⟨f, g⟩ = 0.
(ii) Prove f and g are orthogonal then ∥f + g∥2 = ∥f∥2 + ∥g∥2 (Pythagorous’s identity).
(iii) Prove ∥f + g∥ ≤ ∥f∥+ ∥g∥ (triangle inequality)
(iii) Show that 1, sinx, cosx, sin 2x, cos 2x, . . . are pair-wise orthogonal as elements of L2[−π, π].

The Legendre polynomials Consider the polynomials Pn(x) given by

Pn(x) =
1

2nn!

( d

dx

)n

(x2 − 1)n, n = 0, 1, 2, . . . (2.3)

Check that these polynomials are pairwise orthogonal as elements of L2[−1, 1].

Exercise: (i) Show that Pn(1) = 1
(ii) Pn(x) is an odd function if n is odd and an even function if n is even.
(iii) The polynomial Pn(x) has n distinct real roots in (−1, 1).
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Remark: The roots of the polynomial Pn(x) play an extremely important role in numerical quadra-
ture known as Gaussian quadrature. See the book of S. Chandrasekhar, Radiative transfer, Dover
Publications, New York, 1960 . For more on Legendre polynomials as well as other orthogonal systems
of polynomials, my home page link: http://www.math.iitb.ac.in/ gopal/MA207/ma207.pdf

Least square approximation:

We begin with a definition.

definition A trigonometric polynomial of degree at most N is a linear combination

QN(x) = α0 +
N∑
j=1

(αj cos jx+ βj sin jx)

Suppose f ∈ L2[−π, π] then SN(f, x), the N−th partial sum of the Fourier series of f(x), is obviously
a trigonometric polynomial of degree at most N . We now compare the approximations

∥f(x)−QN(x)∥ and ∥f(x)− SN(f, x)∥

The following theorem asserts that SN(f, x) is the best approximation among all trigonometric
polynomials of degree at most N .

Theorem: Suppose f ∈ L2[−π, π] and QN(x) is a trigonometric polynomial of degree at most N .
Then

∥f(x)− SN(f, x)∥ ≤ ∥f(x)−QN(x)∥.
Equality holds if and only if QN(x) = SN(f, x).

Proof: We begin with the trivial equation

f(x)−QN(x) = (f(x)− SN(f, x)) +RN(X)

where RN(x) = SN(f, x)−QN(x) is a trigonometric polynomial of degree at most N .
We shall now show that (f(x) − SN(f, x)) is orthogonal to each of 1, sinx, cosx, . . . , sinNx and

cosNx. Well, cos jx is orthogonal to 1, sin kx and cos kx when k ̸= j. Hence,∫ π

−π

(f(x)− SN(f, x)) cos jxdx = πaj −
∫ π

−π

SN(f, x) cos jxdx.

= πaj −
∫ π

−π

aj cos
2 jxdx

= πaj −
aj
2

∫ π

−π

(1 + cos 2jx)dx

= 0.

Hence (f(x)− SN(f, x)) is orthogonal to RN(x) and so by Pythagorous’s identity we get

∥f(x)−QN(x)∥2 = ∥f(x)− SN(x)∥2 + ∥RN(x)∥2
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We see at once that
∥f(x)−QN(x)∥ ≥ ∥f(x)− SN(x)∥

and equality holds if and only if RN(x) = 0 that is if and only if QN(x) = SN(f, x).

Theorem (Bessel’s inequality): If a0, an, bn (n = 1, 2, . . . ) are the Fourier coefficients of a function
f ∈ L2[−π, π] we have the following inequality:

|a0|2 +
1

2

∞∑
n=1

(|an|2 + |bn|2) ≤
1

2π

∫ π

−π

|f(x)|2dx (2.4)

Proof: We have already seen that 1, cosx, sinx, . . . , cosNx, sinNx are orthogonal to f(x) − SN(f, x)
whereby we conclude their linear combination SN(f, x) is also orthogonal to f(x) − SN(f, x). The
Pythagorous identity now gives:

∥f(x)− SN(f, x)∥2 + ∥SN(f, x)∥2 = ∥f∥2 (2.5)

Hence
∥SN(f, x)∥2 ≤ ∥f∥2 (2.6)
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