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Continuity of differentiation We have seen that for a sequence {fn} in S(R), convergence in S(R)
is a VERY STRONG notion and we know that if {fn} converges to f in S(R) then the sequence of
derivatives {f ′

n} converges to f ′ in S(R). In other words differentiation is a continuous operator on
S(R).

We now show that differentiation of distributions is a sequentially continuous operaror on S ′(R)

Theorem (Continuity of differentiation): Suppose {uν} is a sequence of tempered distributions
converging weakly to u then the sequence {u′

ν} converges weakly to u′.
Proof: Well, let g ∈ S(R) be arbitrary. Then

⟨u′
n, g⟩ = −⟨un, g

′⟩ −→ −⟨u, g′⟩ = ⟨u′, g⟩.

This proves the theorem.
Recall that the Fourier transform was continuous as an operator on S(R). We now establish the

sequential continuity of the Fourier transform as an operator on the space S ′(R).

Theorem (Continuity of the Fourier transform): Suppose {uν} is a sequence of tempered
distributions converging weakly to u then the sequence {ûν} converges weakly to û.

Proof: Well, let g ∈ S(R) be arbitrary. Then

⟨ûn, g⟩ = ⟨un, ĝ⟩ −→ ⟨u, ĝ⟩ = ⟨û, g⟩.

This proves the theorem.
Exercise:

28. Find the weak limit

lim
ϵ→0+

√
π√
ϵ
exp(−x2/4ϵ).

29. Consider u = exp(iax2) where a is a real number. This is a tempered distribution. Establish the
following the weak limit

lim
ϵ→0+

exp(i(a+ iϵ)x2) = u

Use the dominated convergence theorem. Now for ϵ > 0, we have that x 7→ exp(i(a + iϵ)x2) is
a function in S(R) and so its Fourier transform can be computed via the usual formula using
integrals. Well, we encounter the following

exp(−ξ2/4(ϵ+ ia))

∫
R
exp(−λ(x+

iξ

2λ
)2)dx, λ = ϵ+ ia.

As in chapter 1, use Cauchy’s integral theorem to shift the contour of integration. Finally let
ϵ → 0+ and use the continuity of the Fourier transform as an operator on S ′(R). For a slightly
different approach see Strichartz, p. 47.
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Some examples from Strichartz’ book (page 50) Here we discuss some very nice examples from
the book of R. Strichartz cited earlier. However we shall take a slightly different approach. These
are distributional analogues of radial Fourier transforms discussed earlier. Recall that a function
ϕ ∈ S(Rn) is said to be radial if

ϕ ◦R = ϕ (10.20)

for all R ∈ SO(n,R). There is a way to formulate an analogue of (10.20) for distributions that go
under the name of (compositions with smooth maps). The rule is not difficult to motivate and describe
(see chapter 6 of L. Hörmander’s book). Since in the examples we look at only distributions that
are represented by functions, the usual composition rule (10.20) can be taken as a working definition.
Here we look at the examples of |x|−1 and |x|−2 as tempered distributions in S ′(R3)

Theorem: The locally integrable functions |x|−1 and 4π|x|−2 define tempered distributions on R3

via the prescriptions

g 7→
∫
R3

g(x)dx

|x|3−k
, k = 1, 2. (10.21)

Further the Fourier transform of |x|−1 is the distribution 4π|x|−2.
It follows at once from the dominated convergence theorem that the prescriptions (10.21) do define

tempered distributions. The Fourier transform computation is of course a very different matter. Call
the distribution |x|−1 as u and proceed naively:

⟨û, g⟩ = ⟨u, ĝ⟩.

Now appealing to (10.21) the RHS equals∫
R3

ĝ(x)dx

|x|
=

∫
R3

dx

|x|

∫
R3

exp(−ix · y)g(y)dy

Switching the order of integrals would land us in trouble. The RHS gives us∫
R3

g(y)dy

∫
R3

exp(−ix · y)dx
|x|

Put x = Az where A is an orthogonal matrix and ATy = |y|e3 so that the integral (in polar coordinates
for the inner one) takes the form∫

R3

g(y)dy

∫
R3

exp(−iz · |y|e3)dz
|z|

= 2π

∫
R3

g(y)dy

∫ ∞

0

ρdρ

∫ π

0

exp(−iρ|y| cosϕ) sinϕdϕ.

Put cosϕ = t and perform one integration. We get

⟨û, g⟩ = 4π

∫
R3

g(y)

|y|
dy

∫ ∞

0

sin(|y|ρ)dρ

We have to deal with the oscillatory integral
∫∞
0

sin ρ|y|dρ. One can of course resort to the usual
exp(−ϵ|x|2) trick. Try it out and you would find it slightly troublesome. A slightly easier method is
to modify the trick and instead introduce exp(−ϵ|x|) instead. You will then get that

⟨û, g⟩ = lim
ϵ→0+

4π

∫
R3

g(y)dy

|y|
dy

∫ ∞

0

e−ϵρ sin(|y|ρ)dρ
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If you remember the formula for the Laplace transform of sinωt then we can save some time and write

⟨û, g⟩ = lim
ϵ→0+

4π

∫
R3

g(y)dy

|y|2 + ϵ2
= ⟨ 4π

|y|2
, g⟩

as desired. Exercise: Check the last equality (weak convergence in distributions).

Distributional convergence of Fourier series Let us go back to the example from chapter 1 on
the Fourier expansion of |x|:

|x| = π

2
−

∞∑
k=1

4 cos(2k − 1)x

π(2k − 1)2

The Fourier series converges uniformly to the periodic extension of |x| and so in particular the partials
sums Sn(f, x) converge in the sense of distributions as well. Now the continuity of differentiation gives
the Fourier expansion for the signum function:

sgn(x) = 4
∞∑
k=1

sin(2k − 1)x

π(2k − 1)

In the last chapter the classical Dirichlet’s theorem gave us pointwise convergence whereas here we get
the distributional convergence. Let us differentiate again which is clearly permissible in the context
of distributional convergence. The distributional derivative of the signum function is 2δ0 (how?) and
remember that we have the periodic extension of the signum function which means there will appear
a Dirac delta concentrated at each of the points ±π,±2π, . . . whereby we get the Fourier expansion of
the periodized version Dirac distribution:

π

2

∞∑
n=−∞

(−1)nδπn =
∞∑
k=1

cos(2k − 1)x (10.22)

It would be troublesome to deal with the series on the RHS along classical lines!

29. Explain the reason for the appearence of (−1)n in the last equation.

30. Take the Fourier transform on both sides of the last equation and compare it with equation
(1.25) in chapter 1. Equation (10.22) is the Jacobi theta function identity in disguise !

The theta function revisited Let us look at the distributional equation (10.22) closely. Take
g(x) = exp(−tx2) which is in the Schwartz class (t > 0). Applying both sides of (10.22) to this g(x)
we get

π

2

∞∑
n=−∞

(−1)ne−tπ2n2

=
∞∑
k=1

∫ ∞

−∞
e−tx2

cos((2k − 1)x)dx.

This can be re-written as

π
(
1 + 2

∞∑
n=1

(−1)ne−π2n2t
)
=

∞∑
k=1

∫ ∞

−∞
e−tx2

(eix(2k−1) + e−ix(2k−1))dx.
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The RHS is of course sum of Fourier transforms of the Gaussian and we get(
1 + 2

∞∑
n=1

(−1)ne−π2n2t
)
= 2

∞∑
k=1

√
1

πt
exp(−(2k − 1)2/4t).

Replace t by 1/(4π2τ) and we get

1

2
√
πτ

(
1 + 2

∞∑
n=1

(−1)ne−n2/(4τ)
)
=

∞∑
k=−∞

exp(−π2(2k − 1)2τ). (10.23)

Let us now recall the formula for the Jacobi theta function obtained in chapter 1:

∞∑
n=−∞

exp(−τ(t+ 2πn)2) =
1

2
√
τπ

(
1 + 2

∞∑
n=1

exp(−n2/4τ) cosnt
)

(1.25)

In perfect accordance when we set t = π in (1.25). We now look at a profound generalization of these
classical results.

The Poisson summation formula The LHS of equation (10.22) is a difference of two series of the
form

u =
∑
m∈Z

δmc, c ̸= 0. (10.24)

Note that the partial sums of (10.24) converges weakly (Exercise) and so the sum is a tempered
distribution. We now study this distribution closely omitting routine computational details. The
partial sums of (10.24) converges weakly in sense of distributions:

û =
∑
m∈Z

e−iymc = 1 +
∞∑

m=1

2 cosmcy = 1 + F ′′(y) (10.25)

where F is the 2π/c periodic even function given by:

F (y) = − 2

c2

∞∑
m=1

cosmcy

m2
(10.26)

To identify F , look at the saw-tooth function s(x) given as s(x) = x on (0, 2π) extended with period
2π. Determine the Fourier series for s(x) and integrate it term by term. We get∫ x

0

s(t)dt =
π2

3
− 2

∞∑
m=1

cosmx

m2
, x ∈ [0, π].

Extend the above as an even function to [−π, π] and then deduce that F is given by

F (y) = − π2

3c2
+

π|y|
c

− y2

2
, −2π/c ≤ y ≤ 2π/c.

It is clear that the second distributional derivative of F is

F ′′ = −1 +
2π

c

∑
m∈Z

δ 2πm
c

(10.27)

Substituting into (10.25) gives us the remarkable result known as the Poisson summation formula:
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Theorem For c ̸= 0, let u =
∑

m∈Z δmc then

û =
2π

c

∑
m∈Z

δ2πm/c (10.28)

Remarks: The distribution u above is a lattice of point masses - one placed at each lattice point
mc. The Fourier transform is then another lattice of Dirac deltas ! Applied to a function ϕ ∈ S(R)
equation (10.28) assumes the classical aspect (In chapter 1, the ϕ(x) was the Gaussian):∑

m∈Z

ϕ(mc) =
2π

c

∑
m∈Z

ϕ̂(2πm/c). (10.29)

Poisson summation formula. Concluding remarks. The road ahead. The Poisson summa-
tion formula assumes a more interesting aspect in several variables. The book of R. Strichartz (p. 120)
contains a discussion of the notions of lattices and dual lattices. If we think of a lattice of Dirac deltas
as a crystal structure then the Fourier transform corresponds to X-ray diffraction patterns showing
bright spots at the points of the dual lattice. The student can scarcely do better than to undertake a
systematic study of Strichartz’s book for matters such as

1. Bochner’s theorem on positive definite functions

2. Heisenberg’s uncertaintly principle

3. Paley-Wiener theorems and a glimpse into micro-local analysis

4. A glimpse into Wavelets and the remarkable Haar systems

5. A glimpse into pseudo-differential operators

THE END
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