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Analytic continuation of ζ(s) on C− {1}.

1. Start with the simple formula: ∫ ∞

0

e−ntts−1dt = Γ(s)n−s (1.43)

Set n = 1, 2, 3, . . . and add, justifying carefully the exchange of infinite sums and integrals.

2. Establish the formula

Γ(s)ζ(s) =

∫ ∞

0

ts−1dt

et − 1
=

∫ ∞

0

ts−2ϕ(t)dt, Re s > 1. (1.44)

3. Study the function ϕ(t) = t/(et − 1) for t ̸= 0 and show that with ϕ(0) = 1 the function is
infinitely differentiable on the real line.

4. Perform and integration by parts and show that for Re s > 1 the following holds:

ζ(s) =
−1

(s− 1)Γ(s)

∫ ∞

0

ts−1ϕ′(t)dt (1.45)

However the integral on the right hand side of (1.45) is holomorphic on Re s > 0 and so we get
an analytic continuation of the zeta function on the larger domain Re s > 0 and s ̸= 1.

5. Show that further integration by parts gives

ζ(s) =
(−1)k−1

(s− 1)Γ(s+ k)

∫ ∞

0

ts+k−1
( d

dt

)k+1( t

2
coth

( t

2

))
dt, Re s > −k. (1.46)

Deduce that ζ(s) is holomorphic on C− {1}.

Fourier series and Bessel’s functions

We now turn to another important special function namely the Bessel function of the first kind which
appears commonly in problems concerning wave propagation. We list some important reasons for
studying these:

(1) Vibrations of a circular membrane. Standing waves.

(2) Problems involving cylinderical symmetries. Newton’s rings.

(3) Problems in analytic number theory.

(4) A problem in celestial mechanics. Inversion of the Kepler equation.

For (3) the book H. Iwaniec and E. Kowalski, Analytic Number Theory, American Math. Soc, Provi-
dence, RI, 2004. is highly recommended.
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The Bessel’s differential equation: This is the ordinary differential equation

x2y′′ + xy′ + (x2 − p2)y = 0, p ≥ 0. (1.47)

Writing this as
x2y′′ + xy′ − p2y = −x2y,

we can think of (1.47) as a perturbation of the Cauchy Euler equation

x2y′′ + xy′ − p2y = 0. (1.48)

Since (1.48) has solution xp we are motivated to look for a solution of (1.47) as a Frobenius series

y(x) = xp(a0 + a1x+ a2x
2 + . . . ), a0 ̸= 0.

Computation of the an is routine and will not be done here. With suitable normalization...

Bessel’s functions of the first kind Recall the definition of Bessel’s functions of the first kind:

Definition: The Bessel’s function of the first kind of order k (where k ∈ Z and k ≥ 0) is denoted
by Jk(z) and defined to be the sum of the series:

Jk(z) =
∞∑
n=0

(−1)n

n!(n+ k)!

(z
2

)k+2n

(1.49)

Exercises: (i) Show that the series converges for all z ∈ C and defines an entire function. Term by
term differentiation is valid.

(ii) Prove (zkJk(z))
′ = zkJk−1(z) and (z−kJk(z))

′ = −z−kJk+1(z)
(iii) Prove Jk−1(z)− Jk+1(z) = 2J ′

k(z) and Jk+1(z) + Jk−1(z) = 2kz−1Jk(z) The Bessel’s func-
tions Jk(z) are of course defined for all k not just for integer values of k and they satisfy the ordinary
differential equation (1.47). However we shall use Jk(z) only for integer values of k . Further for
convenience if k < 0 and is an integer we set

Jk(z) = (−1)kJ−k(z) (1.50)

Definition: The generating function for the sequence of Bessel functions Jk(z) (k ∈ Z) is defined as

G(z, t) =
∞∑

k=−∞

tkJk(z) (1.51)

We must first discuss the convergence properties of the series (1.51). For this we need....
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