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Now that we have a notion of differentiation of a distribution and the operation of multiplication
by polynomials we can ask whether the classical differential equations

(1− x2)y′′ − 2xy′ + p(p+ 1)y = 0

(1− x2)y′′ − xy′ + p2y = 0

x2y′′ + xy′ + (x2 − p2)y = 0

xy′′ + (1− x)y′ + λy = 0

x(1− x)y′′ + (c− (a+ b+ 1)x)y′ − aby = 0

have solutions in spaces of distributions. The classical theory of ODEs such as the vector space of
solutions being equal to the order of the differential equation FAILS across singular points namely the
points ±1 in the first two examples and the origin in the last three examples. In the last one both 1
and 0 are singular points.

The case of the Cauchy Euler equation Rather than discuss these things in general let us look
at one specific example and show that for a second order Cauchy Euler equation, the space of solutions
can be at least four dimensional. Consider

x2y′′ + xy′ − y = 0 (10.18)

We know that on (0,∞) there are two linearly independent solutions x and 1/x. The solution x is
defined on the entire real line. Zero function is also a solution. Now let us consider the solution

y1(x) = xH(x) (10.19)

which is a tempered distribution. Exercises:

24. Check that y′1 = H(x) and y′′1 = δ0. Substituting into (10.18) we see at once that y1(x) satisfies
the ODE.

25. Check that δ0 is also a solution of the ODE.

26. Check that PV( 1
x
) satisfies the ODE. Well, abbreviating the distribution by y we have to check

that for each g ∈ S(R)
⟨x2y′′ + xy′ − y, g⟩ = 0.

This is equivalent to checking
⟨y, (x2g)′′ − (xg)′ − g⟩ = 0.

The left hand side is

lim
ϵ→0+

∫
|x|≥ϵ

(g′ + xg′′)dx =

∫
R
(g′ + xg′′)dx

which is easily seen to be zero.

27. Show that the four solutions x, xH(x), δ0 and PV( 1
x
) are linearly independent. Is every solution

of the ODE a linear combination of these?

We shall say no more regarding these things. The relevant material from distribution theory needed
for a systematic handling of such matters may be found in
L. Hörmander, Analysis of linear partial differential operators - I, Springer Verlag, 1990, p 68 ff.
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Convergence of distributions Since the space of distributions is the dual space to the locally
convex TVS S(R), it carries the weak star topology. We define the notion of weak (star) sequential
convergence

Definition: A sequence {uν} of tempered distributions is said to converge to u weakly if for each
g ∈ S(R) we have

⟨uν , g⟩ −→ ⟨u, g⟩, ν → ∞.

This is a VERY weak form of convergence comparable to weakly convergent sequence in a Hilbert
space that we discussed in chapter 7. Here is our example revisited:

(1) sin νx is a tempered distribution and this converges weakly to zero as ν → ∞.

(2) Show that exp(−x2/n) converges weakly to the constant 1 as n → ∞.

(3) Does ν sin νx converge weakly to zero as ν → ∞? What about νk sin νx?

If a sequence {uν} in L2(R) converges weakly in L2(R) then obviously the sequence regarded as
tempered distributions converges weakly. Is the converse true? No. This further suggesting that
weak convergence of distributions is REALLY VERY WEAK notion. However it is a useful notion in
analysis since many existence theorems are proved by first capturing the desired object as some form
of weak limit and then using other techniques to establish the desired regularity of the (weak) limit.
With such a weak notion of convergence there is a better chance of hitting the limit ! Also many Fourier
series we encounter may be divergent and we need tools to handle divergent series - for instance Cesaro
summability or Abel summability. Weak (distributional) convergence of a sequence gives another tool
for handling divergent series.
There other places where you may have encountered this type of convergence namely in measure
theory and probability. This is weak convergence of measures. Recall that a regular Borel measure
with compact support on the real line is a tempered distribution.

Continuity of differentiation We have seen that for a sequence {fn} in S(R), convergence in S(R)
is a VERY STRONG notion and we know that if {fn} converges to f in S(R) then the sequence of
derivatives {f ′

n} converges to f ′ in S(R). In other words differentiation is a continuous operator on
S(R).

We now show that differentiation of distributions is a sequentially continuous operaror on S ′(R)

Theorem (Continuity of differentiation): Suppose {uν} is a sequence of tempered distributions
converging weakly to u then the sequence {u′

ν} converges weakly to u′.
Proof: Well, let g ∈ S(R) be arbitrary. Then

⟨u′
n, g⟩ = −⟨un, g

′⟩ −→ −⟨u, g′⟩ = ⟨u′, g⟩.

This proves the theorem.
Recall that the Fourier transform was continuous as an operator on S(R). We now establish the

sequential continuity of the Fourier transform as an operator on the space S ′(R).
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Theorem (Continuity of the Fourier transform): Suppose {uν} is a sequence of tempered
distributions converging weakly to u then the sequence {ûν} converges weakly to û.

Proof: Well, let g ∈ S(R) be arbitrary. Then

⟨ûn, g⟩ = ⟨un, ĝ⟩ −→ ⟨u, ĝ⟩ = ⟨û, g⟩.

This proves the theorem.
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