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Dirichlet’s theorem on monotone functions: Suppose f : [−π, π] −→ R is a piecewise continuous
monotone function the Fourier series of f converges to f(x) at all the points of continuity and at a
point x0 of discontinuity it converges to

1

2
(f(x0+) + f(x0−)).

At the points ±π the Fourier series converges to

1

2
(f(π−) + f(−π+)).

To simplify Dirichlet’s argument Ossian Bonnet established the mean value theorem for integrals that
bear his name.

Bonnet’s mean value theorem Let g : [a, b] −→ R be continuous.

(i) If f : [a, b] −→ R is monotone then there exists c ∈ [a, b] such that∫ b

a

f(t)g(t)dt = f(b−)

∫ b

c

g(t)dt+ f(a+)

∫ c

a

g(t)dt.

(ii) If f is monotone decreasing and f ≥ 0 then for some c ∈ [a, b]∫ b

a

f(t)g(t)dt = f(a+)

∫ c

a

g(t)dt.

(iii) If f is monotone increasing and f ≤ 0 then for some c ∈ [a, b]∫ b

a

f(t)g(t)dt = f(b−)

∫ b

c

g(t)dt.

We insert here a preliminary result.

Theorem

(i) We have the result: ∫ ∞

0

sinωt

t
dt = sgn(ω)

π

2
.

(ii) If f : [0,∞) −→ R is monotone, for any s > 0,

lim
ω→∞

∫ s

0

f(u)
sinωu

u
du =

π

2
f(0+).

Theorem (Abel’s summation by parts formula): Suppose {an} and {bn} are two sequences
then

N∑
j=1

aj(bj − bj−1) = −
N∑
j=1

(aj − aj−1)bj−1 + aNbN .

with the understanding that a0 = b0 = 0.
Proof is of course quite clear. Observe the analogy with the rule for integration by parts.
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Proof of Bonnet’s mean value theorem Let us assume that f is monotone decreasing. Since
the product fg is Riemann integrable, the idea is to approximate the integral of fg by its Riemann
sums, apply the rule for summation by parts and pass to the limit. The Riemann sums for the integral∫
f(t)g(t)dt are given by

R(fg,Π) =
N∑
j=1

f(cj)g(cj)(tj − tj−1)

where Π denotes the partition of [a, b], R denotes the Riemann sum and cj is specified below. Since g
is assumed to be continuous we have that∫ tj

tj−1

g(u)du = g(cj)(tj − tj−1)

for some cj ∈ (tj−1, tj). With this choice of cj for the Riemann sums displayed we get

R(fg,Π) =
N∑
j=1

f(cj)

∫ tj

tj−1

g(u)du

=
N∑
j=1

f(cj)
(∫ tj

a

g(u)du−
∫ tj−1

a

g(u)du
)

= −
N∑
j=1

(f(cj)− f(cj−1))

∫ tj−1

a

g(u)du+ f(cn)

∫ tn

a

g(u)du

As the mesh of the partition goes to zero, the last displayed term tends to f(b−)

∫ b

a

g(u)du. We now

deal with the term J = −
N∑
j=1

(f(cj)− f(cj−1))

∫ tj−1

a

g(u)du Now the function

ϕ(x) = −
∫ x

a

g(u)du

is continuous with respect to x and let M and m be the supremum and infimum of ϕ. Then

m ≤ −
∫ tj−1

a

g(u)du ≤ M.

Multiplying by f(cj)− f(cj−1) and adding we get

m(f(cn)− f(c1)) ≤ J ≤ M(f(cn)− f(c1)).

Letting the mesh of the partition to tend to zero we get

m(f(b−)− f(a+)) ≤ lim J ≤ M(f(b−)− f(a+))

Thus

lim
( J

f(b−)− f(a+)

)
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lies between m and M and so there is a c ∈ (a, b) such that

lim J = (f(b−)− f(a+))

∫ c

a

g(u)du.

Hence we get in the limit∫ b

a

f(t)g(t)dt = −(f(b−)− f(a+))

∫ c

a

g(u)du+ f(b−)

∫ b

a

g(u)du.

whereby ∫ b

a

f(t)g(t)dt = f(b−)

∫ b

c

g(u)du+ f(a+)

∫ c

a

g(u)du

Now we turn to the other parts of Bonnet’s theorem. From the equation∫ b

a

f(t)g(t)dt = f(b−)

∫ b

c

g(u)du+ f(a+)

∫ c

a

g(u)du

subtract off

f(a+)

∫ c

a

g(u)du

and we get ∫ b

a

(f(t)− f(a+))g(t)dt = (f(b−)− f(a+))

∫ b

c

g(u)du

Now observe that f(x)−f(a+) is decreasing and non-negative and we get the second part of Bonnet’s
theorem. Write F (t) = f(t) − f(a+). The third part is similar. Proof of Bonnet’s theorem is now
complete.

Proof of Dirichlet’s theorem We now turn to the proof of Dirichlet’s theorem. Recall that

Sn(f, x) =

∫ π

−π

Dn(t)f(x− t)dt

which in view of the fact that the integrand is 2π-periodic, can be written as

Sn(f, x) =

∫ x+π

x−π

Dn(t)f(x− t)dt

Again writing out the Dirichlet kernel and using Riemann Lebesgue lemma, finding the limit of Sn(f, x)
is the same as finding the limit of

1

2π

∫ x+π

x−π

sinnt cot(t/2)f(x− t)dt

Next, writing cot(t/2) = (cot(t/2)−2/t)+(2/t). Since cot(t/2)−2/t is continuous, Riemann Lebesgue
lemma allows us to conclude that the limit of Sn(f, x) as n → ∞ is the same as the limit of the
expression

1

π

∫ x+π

x−π

(sinnt
t

)
f(x− t)dt
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Write
[−π, π] = I1 ∪ I2 ∪ · · · ∪ Ik

where I1, I2, . . . , Ik are non-overlapping intervals and f restricted to each Ij is continuous and mono-
tone.

Assume that x /∈ Ij = [c, d] so that x− c and x− d are both non zero and have the same sign and
so

1

π

∫
x−Ij

(sinnt
t

)
f(x− t)dt = ± 1

π

∫ x−c

x−d

(sinnt
t

)
f(x− t)dt

Put nt = u and we get

1

π

∫
x−Ij

(sinnt
t

)
f(x− t)dt = ± 1

π

∫ n(x−c)

n(x−d)

(sinu
u

)
f(x− u

n
)dt

Letting n −→ ∞ we see that

1

π

∫
x−Ij

(sinnt
t

)
f(x− t)dt −→ 0, n → ∞

in this case. Next, if x ∈ Il = [a, b] then x − b ≤ 0 ≤ x − a and not both zero. We split the integral
on x− Il into a sum of two integrals over [x− b, 0] and [0, x− a].

π

∫
x−Il

=

∫ 0

x−b

(sinnt
t

)
f(x− t)dt+

∫ x−a

0

(sinnt
t

)
f(x− t)dt

This time the substitution nt = u gives

π

∫
x−Il

=

∫ 0

n(x−b)

(sinu
u

)
f(x− u

n
)dt+

∫ n(x−a)

0

(sinu
u

)
f(x− u

n
)dt

If x − a or x − b is zero one of the integrals is zero. To deal with the limit when n → ∞ we have to
use theorem 103 namely when f is monotone,

lim
ω→∞

∫ s

0

f(u)
sinωu

u
du =

π

2
f(0+).

So we get in the limit the precise value

π

2

(
f(x−) + f(x+)

)
One of these is to be omitted if x− a or x− b is zero that is if x is an endpoint of Il. In such a case
there will obviously be a non-zero contribution from two adjacent intervals. Now since

Sn(f, x) =

∫ x+π

x−π

=
n∑

j=1

∫
x−Ij

and all but one/two integrals contribute as n → ∞ we get the result that

lim
n→∞

Sn(f, x) =
π

2

(
f(x−) + f(x+)

)
The proof of Dirichlet’s theorem is now complete including all the auxillary propositions !
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