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Dirichlet’s theorem on monotone functions. Let us recall some properties of monotone func-
tions.

(i) A monotone function has only countably many discontinuities.

(ii) The discontinuities are simple jump discontinuities.

(iii) A monotone function is Riemann integrable.

(iv) Given any countable dense subsetD there is a monotone function which is discontinuous precisely
at points of D.

(v) A monotone function is differentiable almost everywhere.

Of these the last property is highly non-trivial (See for example Royden’s Real Analysis). The idea
behind stating this list is that monotone functions can be quite badly behaved in view of (iv). For
example their discontinuities could be dense. Nevertheless we shall see that the Fourier series of a
piecewise continuous monotone function is quite well behaved as regards convergence. This is the
theorem of Dirichlet that we shall establish presently.

Properties of monotone functions To prove (ii), let f : [a, b] −→ R be monotone increasing and
c ∈ [a, b]. We set

l = inf{f(t) : t ∈ (c, b]}.

and we show that f(t) −→ l as t → c+ which proves the existence of the right limit f(c+). So let
ϵ > 0 be arbitrary. There exists t0 ∈ (c, b] such that

f(t0) < l + ϵ.

Then by monotonocity,
l ≤ f(t) < l + ϵ, c < t < t0.

So the requisite δ > 0 is t0 − c. The proof of the existence of a limit from the left is similar. We also
see that

f(c−) ≤ f(c+).

Now suppose a ≤ c1 < c2 ≤ b. Then trvially,

inf{f(t) : t ∈ (c1, c2)} ≤ sup{f(t) : t ∈ (c1, c2}

whereby we conclude
f(c1−) ≤ f(c1+) ≤ f(c2−) ≤ f(c2+)

Thus if c1 and c2 are two points of discontinuity then the intervals

Ic1 = (f(c1−), f(c1+)), Ic2 = (f(c2−), f(c2+))

are pairwise disjoint non-empty open intervals. So if for each discontinuity c we pick a rational number

Q(c) ∈ (f(c−), f(c+))
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then the function c 7→ Q(c) from the set E of discontinuities of f into Q is injective and so the
discontinuities can be at most countable. From this the Riemann integrability of a monotone function
follows at once. Next suppose E is any countable dense subset of [a, b] with enumeration

E = {r1, r2, r3, . . . , }

We select any convergent series of positive terms say
∑

2−n. We construct our function f : [a, b] −→ R
as follows:

f(x) =
∑
rj<x

2−j

This function is evidently monotone. If x < y then there are more indices j such that rj < y than
rj < x. It is not difficult to verify that the function is continuous on [a, b] − E and discontinuous on
E. We leave the details to the audience.

Dirichlet’s theorem (1829) is the earliest rigorous result of a general kind for piecewise continuous
monotone functions.

Dirichlet’s theorem on monotone functions: Suppose f : [−π, π] −→ R is a piecewise continuous
monotone function the Fourier series of f converges to f(x) at all the points of continuity and at a
point x0 of discontinuity it converges to

1

2
(f(x0+) + f(x0−)).

At the points ±π the Fourier series converges to

1

2
(f(π−) + f(−π+)).

To simplify Dirichlet’s argument Ossian Bonnet established the mean value theorem for integrals that
bear his name.

Bonnet’s mean value theorem Let g : [a, b] −→ R be continuous.

(i) If f : [a, b] −→ R is monotone then there exists c ∈ [a, b] such that∫ b

a

f(t)g(t)dt = f(b−)

∫ b

c

g(t)dt+ f(a+)

∫ c

a

g(t)dt.

(ii) If f is monotone decreasing and f ≥ 0 then for some c ∈ [a, b]∫ b

a

f(t)g(t)dt = f(a+)

∫ c

a

g(t)dt.

(iii) If f is monotone increasing and f ≤ 0 then for some c ∈ [a, b]∫ b

a

f(t)g(t)dt = f(b−)

∫ b

c

g(t)dt.

We insert here a preliminary result.
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Theorem

(i) We have the result: ∫ ∞

0

sinωt

t
dt = sgn(ω)

π

2
.

(ii) If f : [0,∞) −→ R is monotone, for any s > 0,

lim
ω→∞

∫ s

0

f(u)
sinωu

u
du =

π

2
f(0+).

Proof: The first part is standard. It is obviously enough to prove it for ω > 0. Make the change of
variables tω = u and we are led to proving∫ ∞

0

sinu

u
du =

π

2
.

This is equivalent to ∫ ∞

−∞

sinu

u
du = π

which is easily done using Cauchy’s theorem applied to (eiz − 1)/z on a semi-circular contour indented
at the origin. We leave the details for the audience since this is probably familar from courses on
complex analysis.

Turning to the proof of (ii) we write (we may clearly assume f is monotone decreasing and non-
positive) ∫ s

0

f(u)
sinωu

u
du =

∫ s

0

(f(u)− f(0+))
sinωu

u
du+ f(0+)

∫ s

0

sinωu

u
du

Put ωu = t in the second term and let ω → ∞ and we get πf(0+)/2. We now tackle the first term.
Let ϵ > 0 be arbitrary. Select r > 0 such that

|f(u)− f(0+)| < ϵ/A, 0 < u ≤ r.

where A is a constant that will be specified. Then∫ s

r

(f(u)− f(0+)

u

)
sinωudu −→ 0

by Riemann Lebesgue lemma and we are left with∫ r

0

(f(u)− f(0+)

u

)
sinωudu

to which we apply the mean value theorem of Bonnet leading to∫ r

0

(f(u)− f(0+)

u

)
sinωudu = (f(r)− f(0+))

∫ r

c

sinωu

u
du

for some c ∈ [0, r]. Since the integral term is bounded in absolute value by A say. We see that∫ r

0

(f(u)− f(0+)

u

)
sinωudu
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is less than ϵ in absolute value. The proof of the theorem is thereby completed.
We shall now prove the theorem of Bonnet since this theorem is usually not available in modern

standard texts. A proof is available in G. A. Gibson’s Advanced Calculus, p. 277. For convenience we
state it here again:

If f : [a, b] −→ R monotone and g : [a, b] −→ R continuous then there is a c ∈ [a, b] such that∫ b

a

f(t)g(t)dt = f(b−)

∫ b

c

g(t)dt+ f(a+)

∫ c

a

g(t)dt.

Proof of Bonnet’s mean value theorem is a beautiful application of Abel’s summation by parts formula.
Since this formula is used frequently towards the analysis of conditionally convergent series (and hence
the Fourier series of many interesting functions) we state it here.

Theorem (Abel’s summation by parts formula): Suppose {an} and {bn} are two sequences
then

N∑
j=1

aj(bj − bj−1) = −
N∑
j=1

(aj − aj−1)bj−1 + aNbN .

with the understanding that a0 = b0 = 0.
Proof is of course quite clear. Observe the analogy with the rule for integration by parts.
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