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The Kepler problem Recall that the perihelion is that point on the orbit of the planet which is
closest to the sun. Suppose the planet passes the perihelion P at time t = 0. Placing the sun at the
focus S, we measure all angles from the radius vector SP . Let X(t) be the position of the planet at
time t and θ(t) be the angle between SP and SX. In astronomy one calls the function θ(t) the True
Anomaly.

Kepler Problem: Find the function θ(t) as explicitly as possible.
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A basic lemma: Let X and Y be corresponding points on the ellipse and the auxiliary circle. Then
Area(PSX) refers to the area of the sector of the ellipse and Area(PSY ) the corresponding sector of
the auxiliary circle.

Area(PSX)

Area(PSY )
=
b

a
=
Area(Ellipse)

Area(Circle)
(8.11)

Exercise:

1. Prove this using integral calculus to compute the indicated areas.

We now use Kepler’s second law and write

Area(PSX)

Area(Ellipse)
=

t

T
=

Area(PSY )

Area(Circle)
(8.12)

But if C denotes the center of the ellipse (and the circle) then

Area(PSY ) = Area(PCY )− Area(∆SCY ) (8.13)

The last two areas are readily described and we get

Area(PSY ) =
1

2
(a2E − a2ϵ sinE) (8.14)

where E is the eccentric angle of P (namely, ∠PCY ) and ϵ the eccentricity of the ellipse.
So from (8.14) we get

Area(PSY )

Area(Circle)
=
E − ϵ sinE

2π

or, using (8.12) we get

E − ϵ sinE =
2πt

T
(8.15)

Equation (8.15) is the famous Kepler Equation. The number 2πt/T is called the Mean Anomaly.

Inverting the Kepler equation Exercises:

2. Show that the function E−ϵ sinE is strictly increasing and maps R onto R. The inverse function
E(t) is a strictly increasing infinitely differentiable function.

3. Explain why the function E(t) is an odd function. Use both geometrical reasoning as well as
mathematical analysis.

4. Show that E(0) = 0 and E(T/2) = π.

The problem of inverting the Kepler equation has been studied by many eminent mathematicians
such as J. L. Lagrange, Memoirs of the Berlin Academie 1768-69. Also volume - II, p. 22 ff. of his
Méchanique Analytique 1815̊,.

In this connection Lagrange discovered the inversion formula that bears his name. The Lagrange
inversion formula has important applications in quite un-related fields such as combinatorics.

1



Bringing in the periodicity Let us now look at E(t+ T ). The Kepler equation gives

E(t+ T )− ϵ sinE(t+ T ) =
2π(t+ T )

T
=

2πt

T
+ 2π.

which can be written as

E(t+ T )− ϵ sinE(t+ T ) = (E(t)− ϵ sinE(t)) + 2π

= (E(t) + 2π)− ϵ sin(E(t) + 2π).

By injectivity of the function λ 7→ λ− ϵ sinλ we conclude

E(t+ T ) = E(t) + 2π. (8.16)

Exercises:

5. Could you derive this directly from physical considerations?

6. Show using (8.16) that ψ(t) = E(t)− 2πt
T

is a periodic function with period T .

Clearly then ψ
(

tT
2π

)
is periodic with period 2π. Let us write the Fourier series for ψ

(
tT
2π

)
:

ψ
( tT
2π

)
=

∞∑
n=1

bn sin(nt),

where

bn =
2

π

∫ π

0

ψ
( tT
2π

)
sin(nt)dt =

2

π

∫ π

0

{
E
( tT
2π

)
− t

}
sin(nt)dt.

Integrating by parts and recalling E(T/2) = π, E(0) = 0, we get

bn =
2

nπ

∫ π

0

d

dt

{
E
( tT
2π

)
− t

}
cos(nt)dt.

This simplifies to

bn =
2

nπ

∫ π

0

d

dt
E
( tT
2π

)
cos(nt)dt =

2

nπ

∫ T/2

0

E ′(s) cos(2πns/T )ds.

Using the Kepler equation again, the argument of the cosine can be re-written resulting in:

bn =
2

nπ

∫ T/2

0

E ′(s) cos(nE(s)− nϵ sinE(s))ds.

The change of variables E(s) = λ now gives

bn =
2

nπ

∫ π

0

cos(nλ− nϵ sinλ)dλ =
2Jn(nϵ)

n
.

The Fourier series now reads

ψ
( tT
2π

)
= E

( tT
2π

)
− t =

∞∑
n=1

2Jn(nϵ)

n
sinnt.

So the eccentric angle E(t) (also known in astronomy as the Eccentric Anomaly) can be written as a
Kaypten series:

E(t) =
2πt

T
+

∞∑
n=1

2Jn(nϵ)

n
sin(2πnt/T ). (8.17)
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The true anomaly

7. Using elementary trigonometry, find a relation between the true anomaly and the eccentric
anomaly.

The relation is

tan
(θ
2

)
=

√
1 + ϵ

1− ϵ
tan

(E
2

)
.
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For a short but quick historical survey see C. A. Ronan, Science, its history and development
among world’s culture, pp. 336-337. The book of D. C. Knight, Johannes Kepler and planetary
motion, Chatto and Windus, London 1965, contains a poignant account of the life and times of the
great astronomer and mathematician.
For more on the Kepler problem and mathematical principles underlying celestial mechanics, the book
by J. M. Danby, Celestial Mechanics and dynamical astronomy, Kluwer Academic, 1991, is HIGHLY
recommended. This second edition contains computer experiments.
A more ambitious project would be to read the comprehensive two volumes
D. Boccaletti and G. Puccaco, Theory of Orbits, Vol- I, II, Springer Verlag, 2004.

One can try to expand the Bessel functions appearing in the Kaypten series

E(t) =
2πt

T
+

∞∑
n=1

2Jn(nϵ)

n
sin(2πnt/T ). (8.17)

and rearrange terms to get a power series in ϵ. however it was known that the resulting series converges
only when ϵ < 0.667. The orbits of most comets exceed this number - Orbit of Halley’s comet is 0.96
!!

It seems an investigation into why the series fails to converge beyond this threshold led Cauchy
to develop the theory of functions of one complex variable. There is an imaginary singularity of the
solution of Kepler equation

E(t)− ϵ sinE(t) =
2πt

T

that prevents the power series from converging beyond the threshold value.
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