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Invariant ortho-complements: Suppose that H is a Hilbert space, T : H −→ H is a self adjoint
bounded linear operator on H. We say that Y is a T -invariant subspace if it is a vector subspace and

Tv ∈ Y, whenever v ∈ Y.

Let us now show that if Y is a T -invariant subspace of H then Y ⊥ is also T -invariant. Well, suppose
z ∈ Y ⊥ we have to show Tz ∈ Y ⊥ namely

⟨Tz, y⟩ = 0, for all y ∈ Y.

By self-adjointness, LHS equals ⟨z, Ty⟩ and Ty ∈ Y , z ∈ Y ⊥ implies

⟨z, Ty⟩ = 0

proving the claim.
Restricting T to Y ⊥ we get an operator

T : Y ⊥ −→ Y ⊥.

which is evidently a bounded linear operator and Y ⊥ being closed is itself a Hilbert space in its own
right. The equation

⟨Tx, y⟩ = ⟨x, Ty⟩

holds for all x, y ∈ Y ⊥ and so the restriction of T to Y ⊥ is also a self-adjoint operator. If T is a
compact operator to begin with then so would this restriction.

Theorem (Existence of an orthonormal basis of eigen-vectors): Suppose T : H −→ H is a
compact self-adjoint operator on a Hilbert space then there is an orthonormal basis of eigen-vectors
of H. Each non-zero eigen value of T has finite multiplicity.

Proof: We have already established the existence of an eigen-vector. A simple application of Zorn’s
lemma or Hausdorff’s maximality theorem assures us that there is a maximal linearly independent
orthonormal set B in H consisting of eigen-vectors and this B is non-empty.

Claim: B is a basis for H. Suppose not let Y be the closure of the linear span of B. B is not a basis
means Y ̸= H and so Y ⊥ is not the zero space and it is a Hilbert space and the opertator restricted
to Y ⊥ is also compact self-adjoint as observed and so it has an eigen vector v0 which may be assumed
to be a unit vector. Then v0 is orthogonal to all the vectors in B and B ∪ {v0} is a strictly larger
orthonormal set of eigen-vectors of T contradicting the maximality of B. The claim is proved and
therewith part (i) of the theorem.

Now let us show that each non-zero eigen-value has finite multiplicity. Let λ be a NON-ZERO
eigen-value with eigen subspace Vλ. We have to show Vλ has finite dimension. Now let U0 be the
closed unit ball in Vλ.

If we show that U0 is compact then we would be done. Well, Let {vn} be a sequence of vectors in
U0 then Tvn = λvn but Tvn has a convergent subsequence whereby vn itself must have a convergent
subsequence which shows that U0 is compact.

The same argument shows that for each c > 0 there are only finitely many eigen values λ with
|λ| > c. Suppose not then we can select an infinite sequence {vn} of unit eigen vectors with pairwise
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distinct eigen-values forming a monotone sequence. The eigen-vectors have mutual distance
√
2 from

each other. But then the image vectors Tvn = λnvn have a convergent subsequence Tvnk
and then

vnk
= λ−1

nk
Tvnk

itself must converge in norm since |λ−1
nk
| < c−1 and so we again get a contradiction.

Distribution of eigen-values: So we have established that for a compact self-adjoint operator on
a Hilbert space there is an orthonormal basis of eigen-vectors. Each non-zero eigen value has finite
multiplicity.

The eigen values form a countable set and can only accumulate at zero.
We have also seen that the eigen-values can be generated by successively maximizing the Rayleigh

quotients analogous to the case of a real symmetric matrix.

Weighted L2 spaces Let ρ : [0, 1] −→ R be non-negative continuous, whose zeros form a set of
measure zero. Then L2

ρ[0, 1] denotes the set of all f : [0, 1] −→ R such that∫ 1

0

|f(t)|2ρ(t)dt < ∞.

This is a vector space over the reals on which we can define an inner product

⟨f, g⟩ =
∫ 1

0

f(t)g(t)ρ(t)dt.

With this L2
ρ[0, 1] is a Hilbert space. Proof is the same as the usual L2[0, 1] with cosmetic changes.

The space is the correct set up for the study of the Sturm Liouville problem

y′′ + λρy = 0, y(0) = y(1) = 0.

Sturm Liouville problems revisited We make the observation that the operator T : L2
ρ[0, 1] −→

L2
ρ[0, 1] given by

Tf(x) =

∫ 1

0

K(x, t)f(t)ρ(t)dt (7.39)

is a compact operator when K(x, t) is continuous on [0, 1]× [0, 1] and is self-adjoint precisely when the
kernel K(x, t) is symmetric namely K(x, t) = K(t, x).

Since the proofs parallel the classical case of L2[0, 1] we shall leave these for the audience. We now
tranform the Sturm Liouville problem into an eigen-value problem for a compact self-adjoint operator
of the form (7.39). Let y(x) be an eigen function of

y′′ + λρy = 0, y(0) = y(1) = 0. (7.40)

with eigen-value λ. We know that 0 is not an eigen value and so λ ̸= 0. Integrating (7.40) twice in
succession we get

y′(x) = y′(0)− λ

∫ x

0

y(t)ρ(t)dt

y(x) = xy′(0)− λ

∫ x

0

ds

∫ s

0

y(t)ρ(t)dt
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Switching the order of integration we get

y(x) = xy′(0)− λ

∫ x

0

y(t)ρ(t)dt

∫ x

t

ds

and so finally

y(x) = xy′(0)− λ

∫ x

0

(x− t)y(t)ρ(t)dt

The boundary condition y(1) = 0 now gives

y′(0) = λ

∫ 1

0

(1− t)y(t)ρ(t)dt

Substituting into the previous formula gives

y(x) = λ

∫ 1

0

x(1− t)y(t)ρ(t)dt− λ

∫ x

0

(x− t)y(t)ρ(t)dt

= λ

∫ 1

0

G(x, t)y(t)ρ(t)dt (7.41)

The Green’s function G(x, t) is given by

G(x, t) = t(1− x) if t ≤ x

G(x, t) = x(1− t) if x ≤ t.

We see that the Green’s function is symmetric and λ−1 is an eigen-value of the compact self-adjoint
operator T : L2

ρ[0, 1] −→ L2
ρ[0, 1] given by

Tf(x) =

∫ 1

0

G(x, t)f(t)ρ(t)dt. (7.42)

Conversely suppose y(x) is an eigen-function for the operator (7.42) with eigen-value λ−1 namely (7.41)
holds. We show that y(x) is an eigen-function for the BVP y′′+λρy = 0 with zero boundary conditions.
Now differentiating the equation Ty(x) = λ−1y(x) (where Ty(x) is given by (7.42)), we get

y′(x) = λ

∫ 1

0

G′(x, t)y(t)ρ(t)dt

= λ
(
−

∫ x

0

ty(t)ρ(t)dt+

∫ 1

x

(1− t)y(t)ρ(t)dt
)
.

y′′ = λ(−xy(x)ρ(x)− (1− x)y(x)ρ(x))

y′′ = −λρ(x)y(x)

Now directly from the expression for G(x, t) we see that G(x, t) = 0 when x = 0 and x = 1 so that
y(x) also satisfies the boundary conditions.
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Theorem: The Sturm Liouville problem

y′′ + λρy = 0, y(0) = 0 = y(1)

has a countable set of eigen values tending to infinity. Each eigen-value is simple and the eigen-
functions form a complete orthonormal basis for L2

ρ[0, 1]. In other words every f ∈ L2
ρ[0, 1] can be

written as a Fourier series

f =
∞∑
n=1

cnyn

where yn are the eigen-functions of the Sturm-Liouville problem.
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