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47 Compact self-adjoint operators. Existence of eigen-values



We see that

20V < sup([[onnll®) + llvns — 2(arby + -+ + axby)|*

N

25up([[vnnl|*) + 4llarby + -+ + anby||* = Hvin, arby + -+ + avby)

Letting n — oo we get that

laiby + asby + - - - + aNbNH2 = HY”2 < Sup(an,nHZ)

So we get for some constant A
a1 |? + |as|? + |as|? + - - + |an[? < A, for all N € N.

Proof of the theorem is complete.

Remarks on the Banach Alaoglu theorem for separable Hilbert spaces: The proof of the
second part was long since it was elementary in character. If we permit ourselves the use of more
sophisticated tools from functional analysis the proof would be considerably shorter. The relevant
result would be the The Banach Alouglu theorem. See for instance Goffman-Pedrick (p. 210) though
the result is not a named there. Also it must be noted that since the closed unit ball in an infinite
dimensional space is NOT compact, norm boundedness of a sequence does not imply norm convergence
of a subsequence but we have a weak substitute namely a weakly converging subsequence!

We have seen that there is NO HOPE of getting norm convergence out of weakly converging
sequences. However there is one important situation that under a peculiar additional condition we can
recover norm-convergence out of a weakly convergent sequence. This result is often useful but since
we shall not make use of it we shall not prove it here

Theorem: Suppose H is a Hilbert space and {v,,} is a sequence that converges weakly to v. Assume
that
[[on][ — ]|

then, we have v,, — v in norm.

Exercise: Prove this using the parallalogram identity.

We are now ready for the proof of the spectral theorem for a compact self-adjoint operator on a
Hilbert space. As in the case of matrices we have the following results:

Theorem (spectral theorem): Suppose T': H — H is a self-adjoint operator on a Hilbert space,
(i) (T'w,v) is real for all v € H.
(ii) Eigen-values of T (if they exist) are real.
(iii) The eigen-vectors corresponding to distinct eigen-values are mutually perpendicular.

Proof: The first two results are significant only for complex Hilbert spaces. In our proof of the
spectral theorem we will directly produce a real eigen-value by construction and so the proofs of (i)
and (ii) would be subsumed in the proof of the spectral theorem. Nevertheless we give an elementary
proof in the complex case.



Well,

(Tv,v) = (v, Tv) = (Tv,v)

The result is now clear.
Turning to (ii) suppose A is an eigen-value of T" with eigenvector v. Then

(Tv,v) = Mo, v) = AJo|]”
On the other hand _ B
(Tw,v) = (v, Tv) = Mo, v) = AfJo|*
comparing the two we get the result. Finally suppose v and w are eigen-vectors corresponding to
distinct eigen-values A and p. Then (Tv, w) = (v, Tw) translates to

(Av, w) = (v, pw)

Which means (in view of (ii)) (A — p)(v,w) = 0. We conclude (v, w) = 0.

Existence of eigen-values Recall that if A is a n x n real symmetric matrix then
sup{(Av,v) : [lo]| = 1}

is attained at an eigen-value of A. We proved this in chapter 6. But the compactness of the closed unit

ball in R™ was crucial. We do not have this compactness property in infinite dimensional spaces and

we must somehow resort to the weak substitute we have established namely the existence of a weakly

convergent subsequence. This is the crux of the proof of the spectral theorem. The rest is routine !
The fact of the matter is that the same idea of maximizing the Rayleigh quotient

(T, v)

works in the infinite dimensional setting with the careful use of weak compactness of the unit ball
which is why the Banach-Alaoglu theorem is so important.

Existence of eigen-values: Before embarking upon the theorem let us make a simple observation
(we consider only real Hilbert spaces). Now suppose (T'v,v) = 0 for all v € H then T'= 0. To see this
observe that

(To+w),v+w) = 0
(T(v—w),v—w) = 0

Subtracting we get
(Tv,w) + (Tw,v) =0

which implies (T'v, w) = 0 for all v,w € H. Taking w = Tv we conclude that 7' = 0. We may clearly
assume that 7' is not the zero operator and thus the Rayleigh quotient cannot be identically zero.
Replacing 7" by —T we may assume that the Rayleigh quotient assumes some strictly positive values
and so its supremum is positive.



Theorem: Suppose T': H — H is a compact self-adjoint operator on a Hilbert space then
sup{(T'v,v) : [jv]| =1}

is an eigen-value of T" and is attained at an eigen-vector of H.

Proof: Denote the supremum by A which evidently exists and it is positive by the remarks made at
the beginning. Take a sequence {v, } of unit vectors such that

(Top, vp) — A

Since T' is a compact operator, the image sequence T'v,, has a norm-convergent subsequence and we
work with this subsequence in what follows and continue to denote it by v,. Thus we have that T'v,
converges to say .

Further the sequence {v,} being norm-bounded, we have a weakly convergent subsequence and we
work with this subsequence denoting it by {v,}. Thus we have a vy such that for every w € H,

(U, —vg,w) — 0, asn — oc.
Now
(Tn, vp) = (Tn — Y, V) + (Y, vn) — (Y, v0) (7.36)

Thus A = (y,vp). Observe that since (T'v,,v,) is real, the limit A is also real. now by self-adjointness
of T" we have

(T, z) = (vp, T2) — (v9, Tz) = (T, 2) (7.37)
and at the same time (by norm convergence of T'v,),
(T, z) — (y, 2) (7.38)
comparing (7.37) and (7.38) we get that
Tvy =y.

Going back to (7.36), we get
A= <y7UU> = <TUU7UO>

Note that since A > 0 the vector vy cannot be the zero vector. Let us show that it is a unit vector.
First, for a fixed m,
<Un7 Um> — <007 Um>

we see that
|{(vo, vm)| < 1.

Letting m — oo we get that ||vg]| < 1. On the other hand,
Yo Yo
() (oop) <
[voll /" Aol

)\ = <TUO,U()> S )\||?J0||2

Which means

implying that ||vg|| = 1.



We have finally shown that the supremum of the Rayleigh quotients IS attained at a unit vector
vg. The most difficult part of the proof is over. We show that vy is an eigen-vector corresponding to
eigen-value \. We can imitate the finite dimensional case here. Let h € H be arbitrary and ¢t € R be
small in absolute value. Then

T(UO + th) Vo + th
lvo + th| " |lvo + th|

{ ) <A

clearing the denominators we get
(T(vg +th),vo + th) < A||vo + th]?
Expanding, and using (vg, vo) = A and |[|vg]| = 1 we get
2t(Twy, h) < 2tA(vg, h) +3(...)
Dividing by |t| and letting ¢ — 0 through positive values and through negative values we get
(T'vg — Avg, h) =0
Since h € H was arbitrary we conclude that
Tvy = A\vyg.

Thus vg is an eigen-vector. In particular eigen-values and eigen-vectors exist.



