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Proof of (iii) is more involved. Suppose λ ̸= 0 then we show that T − λI is surjective and hence
invertible since injectivity is already established in (ii). Given g ∈ L2[0, 1] we need to solve∫ x

0

f(t)dt− λf(x) = g(x) (7.28)

for f ∈ L2[0, 1]. To begin with let us solve (7.28) in case g is smooth. We shall obtain a formula for
f and observe that the formula also provides a solution when g is not smooth ! Differentiating (7.28)
we get the ODE

f(x)− λf ′(x) = g′(x).

We solve this ODE for f using the method of variation of parameters.
The solution is given by

f(x) = cex/λ − 1

λ

∫ x

0

g′(t)e(x−t)/λdt.

where c is an arbitrary constant whose value would be fixed presently. Integrating by parts we get

f(x) = (c+ g(0)/λ)ex/λ − g(x)

λ
− 1

λ2

∫ x

0

g(t)e(x−t)/λdt.

If we select c = −g(0)/λ we get

f(x) = −g(x)

λ
− 1

λ2

∫ x

0

g(t)e(x−t)/λdt. (7.29)

Now that we have an explicit formula for the solution of the equation Tf − λf = g we see that (7.29)
makes perfect sense even if g is not smooth but merely in L2[0, 1].

But now we must go back and verify that (7.29) is a valid solution of

Tf − λf = g

when g ∈ L2[0, 1]. Integrating (7.29) we get

Tf(y) = −1

λ

∫ y

0

g(x)dx− 1

λ2

∫ y

0

dx

∫ x

0

g(t)e(x−t)/λdt

Switching the order of integral we get

Tf(y) = −1

λ

∫ y

0

g(x)dx− 1

λ2

∫ y

0

g(t)dt

∫ y

t

e(x−t)/λdx

Evaluating the inner integral,

Tf(y) = −1

λ

∫ y

0

g(t)e(y−t)/λdt

We see at once (using (7.29)) that
Tf(y)− λf(y) = g(y)

and the verification is complete and T − λI is surjective if λ ̸= 0.
It is a general fact that the spectrum of any bounded operator on a Hilbert space is always non-empty

but the Volterra operator shows that it can reduce to a singleton !
We shall see that this pathology does not occur when the compact operator is also self-adjoint. For

a compact self-adjoint operator on a Hilbert space we have a basis of eigen-vectors and the spectral
theorem holds. However we shall need a preliminary result before we embark upon the spectral
theorem.
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Weak convergence of a sequence Suppose {vn} is a sequence of vectors in a Hilbert space then
recall that vn is said to converge to v in norm if ∥vn − v∥ −→ 0 when n −→ ∞. We now introduce a
much weaker notion

Definition: A sequence {vn} of vectors in a Hilbert space H is said to converge WEAKLY to v if
for EVERY w ∈ H,

⟨vn − v, w⟩ −→ 0

when n −→ ∞.
We say v is the weak limit of the sequence {vn}.
Using the Cauchy Schwartz inequality we see at once that convergence in norm implies weak

convergence. The converse is not true.
Example: Consider L2[−π, π] and the sequences {cosnx} and {sinnx}. These converge to zero

weakly by Riemann Lebesgue Lemma. In fact any orthonormal sequence {bn} in a separable Hilbert
space converges weakly to zero. In fact we shall enlarge the sequence to form an orthonormal basis and
show that the enlarged sequence goes to zero weakly.

Let v ∈ H and xj be the j-th Fourier coefficient of v with respect to {bn}. Parseval formula gives

∥v∥2 = |x1|2 + |x2|2 + |x3|2 + . . .

which means xn −→ 0 or
⟨bn, v⟩ −→ 0

for every v ∈ H and the claim is established.
An orthonormal sequence is FAR from being a norm convergent sequence since

∥bn − bm∥ =
√
2, for all m ̸= n.

Theorem (Weak and norm convergence): (i) Suppose {vn} is a sequence of vectors in a Hilbert
space converging weakly then the sequence is norm bounded namely there is a constant M such that
∥vn∥ ≤ M for all n ∈ N.

(ii) Suppose {vn} is a sequence of vectors in a Hilbert space which is norm bounded then there is
a subsequence converging weakly.

Proof: Proof of (i) is a nice application of the Banach-Steinhaus’s theorem. For each n, let Tn :
H −→ C be the linear transformation given by

Tn(w) = ⟨w, vn⟩

It is clear that Tn is a bounded linear map since |Tnw| ≤ ∥vn∥∥w∥. Since Tn(w) converges for each w
we see that the sequence {Tnw} is bounded for each w ∈ H by a bound Mw that may depend on w.
The Banach Steinhaus theorem says that there is an M such that

|Tnw| ≤ M, for all n ∈ N and for all w ∈ U

where U is the closed unit ball in H. In particular for all unit vectors w,

|⟨w, vn⟩| ≤ M, for all n ∈ N.
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Taking w = vn/∥vn∥ we see that ∥vn∥ ≤ M for all n ∈ N and the proof of (i) is complete.
We shall prove (ii) under the assumption that H is separable. Take a countable orthonormal basis

for H say:
B = {b1,b2,b3, . . . }

Since {vn} is norm bounded, the sequence ⟨vn,b1⟩ is bounded and so there is a convergent subsequence
namely,

⟨vn1 ,b1⟩ −→ a1.

It is convenient to denote the subsequence {vn1} by

v1,1, v1,2, v1,3, . . . . (7.30)

Now since {v1,n} is norm bounded, the sequence ⟨v1,n,b2⟩ is bounded and so there is a convergent
subsequence namely,

⟨v1,nj
,b1⟩ −→ a2.

It is convenient to denote the subsequence {v1,nj
} by

v2,1, v2,2, v2,3, . . . . (7.31)

Proceeding thus we get a family of sequences with each one being a subsequence of the preceeding.
Then the diagonal sequence

v1,1, v2,2, v3,3, . . . . (7.32)

has the property that
⟨vn,n,bj⟩

converges for each j = 1, 2, 3, . . . .
Now we make an educated guess as to what is the weak limit of {vn,n} and then we shall verify

that our guess is correct. The weak limit has a Fourier expansion

w = x1b1 + x2b2 + x3b3 + . . .

and ⟨vn,n,bj⟩ −→ ⟨w,bj⟩ implies that xj = aj for all j and so our guess for the weak limit is

w = a1b1 + a2b2 + a3b3 + . . . (7.33)

We have the serious job of checking that the series (7.33) converges in H which will be so if and only
if

|a1|2 + |a2|2 + |a3|2 + · · · < ∞ (7.34)

We shall verify (7.34) later and continue with the argument. We have to show that for each v ∈ H
there holds ⟨vn,n − w, v⟩ −→ 0. which clearly holds for v = bj for every j and hence holds for every
element p in the linear span of B. Let v ∈ H and ϵ > 0 be arbitrary. There is an element p in the
linear span of B such that

∥v − p∥ < ϵ/2M

where M exceeds ∥vn∥+ ∥w∥. Also for this p there exists n0 ∈ N such that

⟨vn,n − w, p⟩ < ϵ/2, for all n > n0.
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Then for n > n0 we have

|⟨vn,n − w, v⟩| ≤ |⟨vn,n − w, p⟩|+ ∥p− v∥(∥vn,n∥+ ∥w∥)
< ϵ/2 + ϵ/2

and that would complete the argument as soon as we prove the claim (7.34).
The proof of (7.34) is a nice application of the parallelogram law as we shall now see. First, we fix

N and look at
∥vn,n − 2(a1b1 + a2b2 + · · ·+ aNbN)∥2 (7.35)

which expands to (remember our Hilbert spaces are real which suffices for our applications):

∥vn,n∥2 + 4∥a1b1 + a2b2 + · · ·+ aNbN∥2 − 4⟨vn,n, a1b1 + a2b2 + · · ·+ aNbN⟩

The last two terms (together) tend to zero as n → ∞ (Easy).
Now let us apply the parallalogram identity with

X = vn,n − (a1b1 + a2b2 + · · ·+ aNbN), Y = a1b1 + a2b2 + · · ·+ aNbN

and we get
∥X + Y ∥2 + ∥X − Y ∥2 = 2(∥X∥2 + ∥Y ∥2)

which means
2∥Y ∥2 ≤ ∥vn,n∥2 + ∥vn,n − 2(a1b1 + a2b2 + · · ·+ aNbN)∥2

We see that

2∥Y ∥2 ≤ sup
n
(∥vn,n∥2) + ∥vn,n − 2(a1b1 + · · ·+ aNbN)∥2

≤ 2 sup
n
(∥vn,n∥2) + 4∥a1b1 + · · ·+ aNbN∥2 − 4⟨vn,n, a1b1 + · · ·+ aNbN⟩

Letting n → ∞ we get that

∥a1b1 + a2b2 + · · ·+ aNbN∥2 = ∥Y ∥2 ≤ sup
n
(∥vn,n∥2)

So we get for some constant A

|a1|2 + |a2|2 + |a3|2 + · · ·+ |aN |2 < A, for all N ∈ N.

Proof of the theorem is complete.

Remarks on the Banach Alaoglu theorem for separable Hilbert spaces: The proof of the
second part was long since it was elementary in character. If we permit ourselves the use of more
sophisticated tools from functional analysis the proof would be considerably shorter. The relevant
result would be the The Banach Alouglu theorem. See for instance Goffman-Pedrick (p. 210) though
the result is not a named there. Also it must be noted that since the closed unit ball in an infinite
dimensional space is NOT compact, norm boundedness of a sequence does not imply norm convergence
of a subsequence but we have a weak substitute namely a weakly converging subsequence!
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