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Self-adjoint operators on a Hilbert space Recall that if A is an n × n real symmetric matrix
then

⟨Ax, y⟩ = ⟨x,Ay⟩, for all x, y ∈ Rn

where ⟨x, y⟩ denotes the usual dot product in Rn.
The definition of self-adjoint operators on a Hilbert space is modelled on this.
A bounded operator T : H −→ H on a Hilbert space H is said to be self-adjoint if

⟨Tx, y⟩ = ⟨x, Ty⟩, for all x, y ∈ H.

Let us now examine when is a Hilbert-Schmidt operator with a continuous kernel self-adjoint? We
shall deal with real valued kernels only. If the kernel is complex valued one has to modify the result by
putting the complex conjugation at appropriate places ! Our concern here is solution operators of two
point boundary value problems with continuous real density ρ(x) which is positive almost everywhere.

Theorem (Symmetric kernels and Self-adjoint operators): Suppose K(x, t) is continuous on
[0, 1]× [0, 1] then the Hilbert-Schmidt operator T : L2[0, 1] −→ L2[0, 1] given by

Tf(x) =

∫ 1

0

K(x, t)f(t)dt

is self-adjoint if and only if the kernel is symmetric.
In particular for our boundary value problem with Dirichlet boundary conditions at 0 and 1 the

solution operator is a compact self-adjoint operator. On the other hand the Volterra operator is NOT
a self-adjoint operator

Proof of the theorem We shall assume that we are working with a real Hilbert space. Let f, g ∈
L2[0, 1]. Then

⟨Tf, g⟩ =

∫ 1

0

∫ 1

0

K(x, t)f(t)g(x)dtdx

⟨f, Tg⟩ =

∫ 1

0

∫ 1

0

K(t, x)f(t)g(x)dxdt

So that the condition ⟨Tf, g⟩ = ⟨f, Tg⟩ translates to∫ 1

0

∫ 1

0

(K(x, t)−K(t, x))f(t)g(x)dxdt = 0, for all f, g ∈ L2[0, 1].

This implies (using Weierstrass’s approximation theorem for instance) that

K(x, t) = K(t, x)

Eigen-values: Recall that in linear algebra if T : Rn −→ Rn is a linear map then the following are
equivalent:

(i) T is injective.
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(ii) T is surjective.

In infinite dimensional spaces the above equivalence FAILS.
Let H be a Hilbert space and T : H −→ H be a continuous linear map. A complex number λ is

said to be in the spectrum of T if at least one of the following holds:

(i) T − λI is fails to be injective.

(ii) T − λI is fails to be surjective.

We we are mainly concerned with the failure of (i) and accordingly we say λ is an eigen-value of T if
T − λI fails to be injective. In other words, λ is said to be an eigen-value of T if there is a non-zero
vector v ∈ H such that Tv = λv.

The Open Mapping Theorem Suppose X and Y are metric spaces and f : X −→ Y . Then f
is continuous if and only if f−1(G) is open in X whenever G is open in Y . One can ofcourse replace
every occurrence of the word open by the word closed.
Suppose f : X −→ Y is a bijective continuous map. When can we say f−1 : Y −→ X is continuous?
This is an important question that leads to the notion of open/closed map. The requirement is that
for each O open in X we need (f−1)−1(O) to be open in Y namely f(O) should be open in Y whenever
O is open in X. Again we could replace the word open by closed and we would again get a condition
for f−1 to be continuous.

Definition: A map f : X −→ Y is said to be an open (closed) map if whenever O is open (resp.
closed) in X the set f(O) is open (resp. closed) in Y .

Thus a bijective continuous map f : X −→ Y is a homeomorphism if it is an open (closed) map.

(i) Suppose X is a compact metric space and Y is a metric space then a continuous function
f : X −→ Y is also a closed map and hence a continuous bijection from X onto Y is a homeo-
morphism.

(ii) Suppose G is a connected open set in C and f : G −→ C is a non constant holomorphic function,
then f is an open mapping.

(iii) Suppose G is a connected open set in Rn and f : G −→ Rn is smooth and Df(x) is non-singular
at each point of G then f is an open mapping.

Theorem: Let H be a Hilbert space and T : H −→ H be a surjective continuous linear map. Then
T is an open mapping.

Volterra operator revisited: Let us examine the Volterra operator again for spectral values.

Tf(x) =

∫ x

0

f(t)dt.

First of all note that since the image of the Volterra operator contains only continuous functions it is
not surjective and so 0 is in the spectrum.

Questions: (i) Is 0 an eigen-value? What are the eigen-values of the Volterra operator?
(ii) We shall see that the Volterra operator has NO eigen-values.
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(iii) Further we shall show that the spectrum of the Volterra operator consists of the zero element
alone.

In fact if H is an infinite dimensional Hilbert space and T : H −→ H is a compact operator then
0 is always in the spectrum of T . The Volterra operator exhibits an extreme phenomenon.

Spectrum of the Volterra operator (i) Let us first show that 0 is not an eigen-value. Suppose it
is. Then there exists a non-zero L2 function f such that∫ x

0

f(t)dt = 0, for all x ∈ [0, 1].

This means ∫ y

x

f(t)dt = 0, for all x, y ∈ [0, 1] with x < y.

Hence ∫
A

f(t)dt = 0

for all measurable subsets of [0, 1]. This forces f ≡ 0 which is a contradiction.
We have proved 0 is not an eigen-value.
(ii) Let λ ̸= 0 be a complex number. Let us now show that λ cannot be an eigen-value. Suppose

it is and let f ∈ L2[0, 1] be the eigen-vector namely Tf = λf or∫ x

0

f(t)dt = λf(x). (7.27)

Since the LHS is continuous, so is the RHS which means that the eigen-vector f had to be continuous
to begin with. Now the LHS is continuously differentiable and so is the RHS so that the eigen-vector
f had to be continuously differentiable to begin with. Proceeding thus we see that the eigen-vector
must be differentiable infinitely often. Differentiating the displayed equation (7.27) we get

f(x) = λf ′(x)

which means f(x) = cex/λ. With this we see that (7.27) fails (c ̸= 0).
Proof of (iii) is more involved. Suppose λ ̸= 0 then we show that T − λI is surjective and hence

invertible since injectivity is already established in (ii). Given g ∈ L2[0, 1] we need to solve∫ x

0

f(t)dt− λf(x) = g(x) (7.28)

for f ∈ L2[0, 1]. To begin with let us solve (7.28) in case g is smooth. We shall obtain a formula for
f and observe that the formula also provides a solution when g is not smooth ! Differentiating (7.28)
we get the ODE

f(x)− λf ′(x) = g′(x).

We solve this ODE for f using the method of variation of parameters.
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