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More examples of compact operators: The example can easily be generalized to other integral
operators. Again let us work with L2[0, 1] for convenience.

Example 1 (Hilbert-Schmidt operator): T : L2[0, 1] −→ L2[0, 1] given by

Tf(x) =

∫ 1

0

K(x, t)f(t)dt.

where K(x, t) is a continuous function on [0, 1] × [0, 1]. Again let us show that this operator is a
compact operator.

We shall first establish that the family {Tf : f ∈ U} is equi-continuous. This is easy. Since every
continuous function on [0, 1]× [0, 1] is uniformly continuous, given any ϵ > 0 there is a δ > 0 such that

|x− y| < δ, implies |K(x, t)−K(y, t)| < ϵ.

The Hilbert-Schmidt Operator: Hence, for |x− y| < δ we have

|Tf(x)− Tf(y)| ≤
∫ 1

0

|K(x, t)−K(y, t)||f(t)|dt < ϵ

∫ 1

0

|f(t)|dt < ϵ

since the integral of |f | over [0, 1] is less than or equal to ∥f∥ by Cauchy Schwartz and ∥f∥ ≤ 1.
To establish uniform boundedness we proceed as follows. Let M be the supremum of K(x, t) over

the square [0, 1]× [0, 1]. Then

|Tf(x)| ≤
∫ 1

0

|K(x, t)||f(t)|dt ≤ M

∫ 1

0

|f(t)|dt ≤ M∥f∥ ≤ M.

The Ascoli-Arzela theorem now proves that the operator is compact.

Connection with boundary value problems Let us see how Hilbert Schmidt operators arise out
of boundary value problems. Consider the problem of solving

y′′ + λρ(x)y = f(x), y(0) = y(1) = 0. (7.23)

Let us assume that λ is NOT an eigen-value so that the problem with zero RHS (namely the corre-
sponding homogeneous system) has only the trivial solution. This ensures that the problem at hand
(if it has a solution) can only have a unique solution.

Compare the situation with solving Ax = b where A and b are matrices. If the homogeneous
equation Ax = 0 has only the trivial solution then the inhomogeneous equation Ax = b cannot have
at most one solution.

So if (7.23) has a solution for each f ∈ L2[0, 1] then we obtain a well-defined solution operator
T : L2[0, 1] −→ L2[0, 1] namely, the unique solution to (7.23) for the given input function f . Let us
see what is the form of this solution operator.

Form of the solution operator: Let y1(x) and y2(x) be the solutions of the initial value problem

y′′ + λρ(x)y = 0, (7.24)

satisfying
y1(0) = 1, y′1(0) = 0, y2(0) = 0, y′2(0) = 1. (7.25)
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These two solutions are evidently linearly independent. We use the method of variation of parameters
to solve (7.24). To this end we seek a particular solution yp(x) of the inhomogeneous equation (7.23)
in the form

yp(x) = v1(x)y1(x) + v2(x)y2(x). (7.26)

where the functions v1(x) and v2(x) satisfy the pair of equations

v′1y1 + v′2y2 = 0, v′1y
′
1 + v′2y

′
2 = f

Solving these we get

v1(x) = −
∫ x

0

y2(t)f(t)dt, v2(x) =

∫ x

0

y1(t)f(t)dt.

So we get the particular solution

yp(ξ) =

∫ ξ

0

(y1(t)y2(ξ)− y1(ξ)y2(t))f(t)dt =

∫ 1

0

K(ξ, t)f(t)dt

where the kernel K(ξ, t) is given by

K(ξ, t) = y1(t)y2(ξ)− y1(ξ)y2(t) (t ≤ ξ), and K(ξ, t) = 0 (t ≥ ξ)

Observe that the kernel is continuous on [0, 1] × [0, 1]. We need to modify the solution to fit the
boundary conditions.

Incorporating the boundary conditions: We seek the solution of our problem as

y(x) = c1y1(x) + c2y2(x) +

∫ x

0

K(x, t)f(t)dt.

where the constants c1 and c2 have to be appropriately selected. The condition y(0) = 0 gives imme-
diately c1 = 0. Setting x = 1 we get

c2 =
−1

y2(1)

∫ 1

0

K(1, t)f(t)dt.

How can we be sure that y2(1) ̸= 0? Because y2(1) = 0 would immediately say that y2 is an eigen-
function with eigen-value λ but we have expressly assumed that λ is not an eigen-value.

The Green’s function: Putting the value of c2 obtained in our formula we get

y(x) =
1

y2(1)

∫ 1

0

(K(x, t)y2(1)−K(1, t)y2(x))f(t)dt

=

∫ 1

0

G(x, t)f(t)dt.

The kernel G(x, t) is called the Green’s function for the boundary value problem. It is evidently
continuous. The solution of the problem has been expressed as a Hilbert-Schmidt operator on L2[0, 1].

We now examine the kernel G(x, t) in more detail by writing out the complete expression.
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Symmetry of the Green’s function

(i) If t ≤ x then
y2(1)G(x, t) = y2(x)y2(t)y1(1)− y2(t)y2(1)y1(x).

(ii) If x ≤ t then
y2(1)G(x, t) = y2(x)y2(t)y1(1)− y1(t)y2(1)y2(x).

Observe that the Green’s function is symmetric namely

G(x, t) = G(t, x).

What is cause of this symmetry? This is related to the fact that the two point boundary value problem
with Dirichlet boundary conditions gives rise to a self-adjoint operator.

Comment: Since there is a parameter λ in the differential equation, the Green’s function would
also depend on this parameter and so we must write G(x, t, λ) for the Green’s function.

Symmetry of the Green’s function and self-adjointness You may recall that in the theory of
Poisson’s equation with Dirichlet boundary conditions,

∆u = f, in Ω, u
∣∣∣
∂Ω

= 0.

the solution can be expressed as

u(x) =

∫
Ω

G(x, ξ)f(ξ)dξ

and the Green’s function is symmetric. This is again related to the self-adjointess of the problem.
Exercises: (1) Consult books on PDEs for the expression for the Green’s function for a ball and

verify that it is symmetric.
(2) Determine the Green’s function for y′′ + λy = f on [0, 1] with Dirichlet boundary conditions.

Green’s function for a Ball in Rn: The basic fact is that the Green’s function is a correction to
the so called fundamental solution which in Rn is the Newtonian potential. Thus

G(x, ξ) =
a

∥x− ξ∥n−2
+ C(x, ξ), n ≥ 3.

where a is a constant and the correction term C(x, ξ) is harmonic on an open neighborhood of the
closed ball B and hence smooth. So the cause of concern is the term involving ∥x− ξ∥2−n.

Exercise: Examine whether G(x, ξ) ∈ L2(B×B). The answer may depend on the space dimension
n.

Self-adjoint operators on a Hilbert space Recall that if A is an n × n real symmetric matrix
then

⟨Ax, y⟩ = ⟨x,Ay⟩, for all x, y ∈ Rn

where ⟨x, y⟩ denotes the usual dot product in Rn.
The definition of self-adjoint operators on a Hilbert space is modelled on this.
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A bounded operator T : H −→ H on a Hilbert space H is said to be self-adjoint if

⟨Tx, y⟩ = ⟨x, Ty⟩, for all x, y ∈ H.

Let us now examine when is a Hilbert-Schmidt operator with a continuous kernel self-adjoint? We
shall deal with real valued kernels only. If the kernel is complex valued one has to modify the result by
putting the complex conjugation at appropriate places ! Our concern here is solution operators of two
point boundary value problems with continuous real density ρ(x) which is positive almost everywhere.
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