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Non-separable Hilbert spaces. Almost periodic functions Do non-separable Hilbert spaces
exist? If so, are they useful ? Specifically, do they arise naturally in other parts of analysis? We shall
say a few words about this with some references. The most important example concerns the space of
almost periodic functions on the real line. This topic is of paramount interest in dynamical systems
and differential equations. The definition goes back to Harold Bohr (brother of the physicist Niels
Bohr).

Definition: A continuous function f : R −→ C is said to be almost periodic if for every ϵ > 0 there
exists Lϵ > 0 such that every interval of length Lϵ contains a point c such that

|f(x+ c)− f(x)| < ϵ, for all x ∈ R.

In particular, for each ϵ > 0 there is an ϵ-approximate period c.
Note that if c is an ϵ-approximate period then 2c is only a 2ϵ-approximate period and so the set

of ϵ-approximate periods will NOT be an additive subgroup of R. So the clause that EVERY interval
of length Lϵ contains an ϵ-approximate period is really a condition that should be compared with say
uniform continuity in elementary analysis.
It is completely trivial to see that a continuous periodic function is almost periodic (how?).

Theorem:

1. An almost periodic function is uniformly continuous.

2. The set AP of almost periodic functions on R is a vector space which is closed under pointwise
multiplication and also closed under uniform limits.

In order to define an inner-product on AP we need to introduce a new notion.

DEfinition (Mean value of an almost periodic function):

1. Suppose f ∈ AP then the limit

lim
T→∞

1

2T

∫ T

−T

f(x+ t)dt

exists uniformly with respect to x and it is independent of x. This limit Mf is called the Mean
Value of f.

2.
⟨f, g⟩ = Mfg

The norm given by this inner-product is denoted by ∥f∥.

is an inner product on AP and with this AP is a pre-Hilbert space.
Exercise: What happens to Mfg if f and g are actually 2π−periodic continuous functions?
Let us now take f(t) = exp(iλt) and g(x) = exp(iµt) where λ, µ are real numbers. They are both

periodic and hence belong to AP .
Exercise: Check that ∥f∥ = 1 = ∥g∥ and that ⟨f, g⟩ = 0 if λ ̸= µ so that the space AP contains

the uncountable family
{exp(iλt) : λ ∈ R}.
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of pairwise orthogonal unit vectors so that the distance between any two of them is
√
2. It follows

that the metric space AP cannot be separable and so the Hilbert space completion of AP is also a
non-separable Hilbert space.
We shall return to almost periodic functions later if time permits but here are two references.

1. F. Riesz and B. Nagy, Functional Analysis, Dover NY, Indian Reprint 2007. See pages 254-260.

2. C. Corduneanu, Almost periodic functions, Chelsea, New York, 1989.

Spectral theorem We would like to see the form that the spectral theorem takes in a Hilbert space.
This is however a long chapter in functional analysis that would take us too far afield. However there
is one important case that is relevant to us in the context of generalized Fourier expansions namely
regular Sturm-Liouville problems and Fourier expansions in terms of eigen-functions of a two point
boundary value problem for an ordinary differential equation.

We have seen the classical approach in chapter 5 and we now return to this in the Hilbert space
setting.

This concerns the spectral theorem for a compact self-adjoint operator on a Hilbert space. We begin
with the relevant terms and definitions with some examples.

Compact operators on a Hilbert space

Recall that an operator T : H −→ H is said to be bounded (= continuous) if

∥Tx∥ ≤ C∥x∥, for all x ∈ H.

In other words the image T (U) of the closed unit ball U in H is bounded in H. Compact operators
are stronger:

Definition: Let H be a Hilbert space. An operator T : H −→ H is said to be compact if the image
T (U) of the closed unit ball U in H is precompact in H. Note that if H is finite dimensional every
operator on H is compact. In general compact operators form a distinguished subclass of operators
on a Hilbert space.

We now look at more interesting examples of compact operators on Hilbert spaces. We shall begin
with the Hilbert space L2[0, 1]

Example 1 (The Volterra operator): T : L2[0, 1] −→ L2[0, 1] given by

Tf(x) =

∫ x

0

f(t)dt.

The operator arises when we try to solve the initial value problem

y′ = f(x), y(0) = 0.

Note that since f ∈ L2[0, 1] its integral over [0, 1] is actually continuous so that Tf is a continuous
function. Well, assume x < y.

|Tf(x)− Tf(y)| ≤
∫ y

x

|f(t)|dt ≤ |x− y|1/2∥f∥

We have actually established the Hölder continuity of f .
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The Volterra operator is compact: To establish the compactness of the Volterra operator, we
assume that ∥f∥ ≤ 1 so that

|Tf(x)− Tf(y)| ≤ |x− y|1/2

for all f in the unit ball U of L2[0, 1]. Next, Tf(0) = 0 so that putting y = 0 we get

|Tf(x)| ≤ 1

for all f in the unit ball of L2[0, 1].
We have to show that the set {Tf : f ∈ U} is precompact which means every sequence has a

subsequence converging in L2 norm. It suffices to show that there is a subsequence converging uniformly
since uniform convergence of a sequence of continuous functions on [0, 1] implies convergence in L2

norm.
We now appeal to the classical Ascoli-Arzela theorem that we first recall:

The Ascoli-Arzela theorem 1) A family S of continuous functions on [0, 1] is said to be equi-
continuous if given any ϵ > 0 there exists a δ > 0 such that for all f ∈ S,

|x− y| < δ, implies |f(x)− f(y)| < ϵ.

The point here is that the δ depends only on ϵ and not on the function f . In other words the SAME
δ works for ALL the functions in the family S for a given ϵ.

2) A family S of continuous functions on [0, 1] is said to be uniformly bounded if there is an M > 0
such that for all f ∈ S and for all x ∈ [0, 1], we have

|f(x)| ≤ M.

Theorem (Ascoli-Arzela): A family S of continuous functions on [0, 1] is precompact if and only
if it is equi-continuous and uniformly bounded.

Proof of the Ascoli-Arzela theorem is not difficult but we shall not stop to prove it here. A proof
is available for example in Rudin’s Principles of mathematical analysis, third edition, 1976.

It follows at once from the Ascoli-Arzela theorem that for the Volterra operator the family {Tf :
f ∈ U} is precompact establishing that the Volterra operator is compact.
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