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Exercises:

(3) Show that

exp(−(x− t)2) =
∞∑
n=0

1

n!
Hn(x)e

−x2

tn (7.12)

From this we can get the generating function for the sequence 1
n!
Hn(x).

To obtain this expression we begin with the power series

exp(2zx− z2) = b0(x) + b1(x)z + b2(x)z
2 + . . .

It is easy to see that 0!b0(x) = 1 = H0(x) and 1!b1(x) = H1(x). We now find a three term recurrence
relation for the coefficients bj(x) and compare it with the three term recurrence relation for the sequence
Hn(x). Well, differentiate the equation

D exp(2xz − z2) = (2x− 2z) exp(2xz − z2)

n times and set z = 0. Here D stands for differentiation with respect to z. We get

(n+ 1)!bn+1(x) = n!(2x)bn(x) +

(
n

1

)
(−2)(n− 1)!bn−1(x).

which simplifies to
(n+ 1)bn+1(x)− 2xbn(x) + 2bn−1(x) = 0.

Use induction to complete the argument that n!bn = Hn for all n.

4. Use Cauchy’s formula for the entire function z 7→ exp(2xz − z2) to estimate Hn(x)/n!. For
simplicity assume x is real positive and take a circle C of radius R = 2x centered around the
origin. Then

Hn(x)

n!
=

1

2πi

∮
C

exp(2zx− z2) dz

zn+1

We shall need some reasonable estimate to exchange a summation and integration using the dom-
inated convergence theorem. An essential step in proving completeness of the Hermite functions.

5. Suppose |x| ≤ 1 show using the three term recurrence relation that

|Hn(x)/n!| ≤ 2n (7.13)

and if |x| ≥ 1 obtain the estimate

|Hn(x)/n!| ≤ |Cx|−n exp(x2/3) (7.14)

where C is independent of n and x. Clearly we may assume x > 0. For the last part, apply the
Cauchy’s estimate for the n−th derivative of the function exp(2xz − z2) taking a circle centered
at the origin and of radius R. You get∣∣∣Hn(x)

n!

∣∣∣ ≤ 1

πRn

∫ π

0

exp(2Rx cos t−R2 cos 2t)dt (7.15)

2



Crude estimates would suffice and we take R = x/8. The integrand in (7.15) can be upper-bounded
by

exp(2Rx+R2) = exp(
x2

4
+

x2

64
) < exp(x2/3)

Thus we immediately get the result∣∣∣Hn(x)

n!

∣∣∣ ≤ 1

πRn

∫
A

exp(2Rx+R2)dt ≤ |Cx|−n exp(x2/3), |x| ≥ 1.

The inequalities (7.13)-(7.14) can be combined into one (weaker) inequality:∣∣∣Hn(x)

n!

∣∣∣ ≤ Cn exp(x2/3) (7.16)

where C is a positive constant. We are now in a position to complete the discussion that we first state
as:

Theorem: The linear span of

{Hn(x) exp(−x2/2) : n = 0, 1, 2, . . . } (7.17)

is dense in L2(R) namely (7.17) is a complete orthogonal system for L2(R).
To prove this suppose that f(x) ∈ L2(R) and f ⊥ Hn(x) exp(−x2/2) for n = 0, 1, 2, . . . so that∫

R
f(x)Hn(x) exp(−x2/2)dx = 0, n = 0, 1, 2, . . . (7.18)

Multiply (7.18) by tn/n! and sum over n. The exchange of summation and integration needs justifi-
cation using the DCT. From our discussion on the estimates for |Hn(x)|/n!, the partial sums are all
dominated by

f(x) exp
(x2

3
− x2

2

) ∞∑
n=0

(Ct)n

This is in L1(R) if |t| < 1/C since the other factor rapidly decreasing. Hence using (7.12) we easily
get the result: ∫

R
exp

(
− 1

2
(x− 2t)2

)
f(x)dx = 0. (7.19)

But observe that the LHS of (7.19) is holomorphic as a function of t ∈ C and the above holds for all
values of t real or complex. Now letG be the Gaussian ξ 7→ exp(−ξ2/2) and (7.19) reads (G∗f)(2t) = 0.
Taking Fourier transform and appealing to the convolution theorem, we get

f̂ = 0

and so f = 0 as desired. The proof is complete.

The Laguerre polynomials and Laguerre functions As two further examples before continuing
with the theory, let us look at L2(0,∞). This is yet another classical example with applications to
quantum mechanics. Here again we shall construct a orthogonal basis of the form Ln(x)e

−x/2 where
Ln(x) are polynomials known as Laguerre polynomials.

As in the case of Hermite functions we begin with the Laguerre differential equation - See Arthur
Beiser’s Perspectives in Modern Physics for the background in physics.

We shall not prove the completeness of the Laguerre functions at this stage.

3



Laguerre differential equation This is the equation

xy′′ + (1− x)y′ + λy = 0.

The equation has a polynomial solution Fλ(x) when λ is a non-negative integer. Since the Wronskian of
two solutions is singular at the origin, it cannot have TWO linearly independent polynomial solutions.
So the polynomial solutions for non-negative integer λ are unique upto scalar multiples.

When λ = n is a non-negative integer, the Laguerre functions are defined as Ln(x)e
−x/2 with Ln(x)

a scalar multiple of Fn normalized so that the L2 norm is one.
The ODE is easily converted into self-adjoint form through multiplication by e−x namely(

xe−xy′
)′
+ λe−xy = 0.

From this we immediately infer the orthogonality of the Laguerre functions.

Theorem (Orthogonality of the Laguerre functions): The functions {Ln(x)e
−x/2 : n =

0, 1, 2, . . . } is an orthogonal system of functions in L2(0,∞) namely∫ ∞

0

Ln(x)Lm(x)e
−xdx = 0, m ̸= n.

Proof is simple. We have the two equations(
xe−xL′

n

)′
+ ne−xLn = 0,

(
xe−xy′

)′
+me−xy = 0.

Multiply the first by Lm, second by Ln integrate by parts and subtract and the result follows.
We leave the normalization computation to the audience.

Tchebychev’s Differential Equation:

12. Discuss the series solutions of the Tchebychev’s differential equation:

(1− x2)y′′ − xy′ + p2y = 0

Show that if p is an integer, of the two linearly independent solutions exactly one of them
terminates into a polynomial solution which after suitable renormalization is denoted by Tn(x).

13. Rewrite the ODE in self-ajoint form and show that if k ̸= l∫ 1

−1

Tk(x)Tl(x)(1− x2)−1/2dx = 0.

In other words the Tchebychev’s polynomials form an orthogonal system with respect to the
weight function (1− x2)−1/2.

14. Show that sin(p sin−1(x)) and cos(p cos−1 x) satisfy the Tchebychev’s equation.
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15. Show that Tn(x) = cos(n cos−1 x). This means you need to prove first that the function on the
right is a polynomial. Then invoke uniqueness of Tn as a polynomial of degree n satisfying the
ODE with appropriate normalization. Assume by induction that

cosnt = Polynomial in cos t.

So that
cos(n+ 1)t = cosnt cos t− sinnt sin t = Polynomial in cos t− sinnt sin t

Now we write exp(it) = a and we see that

−4 sinnt sin t = (an − a−n)(a− a−1) = (a2 + a−2 − 2)(. . . ) = (2 cos 2t− 2)(. . . )

For more problems on Tchebychev’s polynomials, the student is referred to pp 177-187 of L. Sirovich,
Introduction to Applied Mathematics, Springer Verlag, 1988. In the next slide we shall list some from
chapter 6 of the book of L. Sirovich.

Additional Problems on Tchebychev’s polynomials:

20. Recall that Tn(x) = cos(n cos−1(x)). Use this to determine the three term recursion formula for
the sequence {Tn(x)}.
Ans: Tn+1(x) + Tn−1(x) = 2xTn(x).

21. Compute the integral ∫ 1

−1

(Tn(x))
2dx√

1− x2

22. As for the case of Legendre polynomials, show that the Tchebychev’s polynomial Tn(x) has n
distinct roots in (−1, 1). Determine these roots.

23. Show that

Tn(x) =
1

2

{
(x− i

√
x2 − 1)n + (x+ i

√
x2 − 1)n

}
Hint: Write cosine in exponential form.

24. Use the previous result to prove that the generating function for the sequence {Tn(x)} is

G(x, t) =
1− tx

1 + t2 − 2tx
.

25. Use trigonometry to show that 2Tm(x)Tn(x) = Tm+n + Tm−n.

26. Show that Tn(Tm(x)) = Tmn(x).

27. Prove that ( d

d cos θ

)n−1

sin2n−1 θ = (−1)n−11 · 3 · 5 . . . (2n− 1)

n
sinnθ

This formula is due to C. G. J. Jacobi (1836). See p. 26 ff. of G. N. Watson, Treatise on the
theory of Bessel functions to understand its immense use in special functions.
Hint: Put t = cos θ and show that

f(t) =
( d

dt

)n−1

(1− t2)n−
1
2
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is a solution of Tchebychev’s ODE whereby

f(t) = cn sin(n cos−1 t).

To determine cn divide both sides by
√
1− t and let t → 1.

6


