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Unlike the case of Legendre polynomials, there is no universally accepted convention for normalizing
these polynomials. Let us call these polynomials Fλ(x) (λ non-negative integer).

Theorem (Orthogonality of Hermite polynomials): The polynomials Fλ(x) (λ = 0, 1, 2, . . . )
form an orthogonal family in the following sense:∫

R
Fm(x)Fn(x)e

−x2

dx = 0, m ̸= n.

Define
hn(x) = Fn(x)e

−x2/2, n = 0, 1, 2, . . .

The family {hn(x) : n = 0, 1, 2, . . . } is an orthogonal system of functions on L2(R).
Let us dispose off the proof of the theorem. Multiply the differential equation

y′′ − 2xy′ + 2λy = 0

by exp(−x2) to make it self-adjoint whereby

d

dx

(
e−x2

y′
)
+ 2λye−x2

= 0.

Now,

d

dx

(
e−x2

F ′
m

)
+ 2mFme

−x2

= 0.

d

dx

(
e−x2

F ′
n

)
+ 2nFne

−x2

= 0.

Multiply the first by Fn, second by Fm integrate by parts and subtract.

An explicit formula for the Hermite functions We now proceed to obtain an explicit formula
for these Hermite functions. Define

Qn(x) = ex
2

Dn(e−x2

) (7.7)

which is evidently a polynomial of degree n. Now, assume m < n. Then,∫
R
Qn(x)Qm(x)e

−x2

dx =

∫
R
Qm(x)D

ne−x2

dx

Integrate by parts n times transferring all the derivatives onto the factor Qm(x) and we get∫
R
Qn(x)Qm(x)e

−x2

dx =

∫
R
DnQm(x)e

−x2

dx

But DnQm(x) = 0 since m < n. So we are in the following situation.
We have the vector space V of all polynomials endowed with the innerproduct

⟨f(x), g(x)⟩ =
∫
R
f(x)g(x)e−x2

dx
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and we have two sets of polynomials

Q0, Q1, Q2, . . . , and F0, F1, F2, . . . ,

such that linear span{Q0, Q1, Q2, . . . , Qn} = linear span{F0, F1, F2, . . . , Fn} for EVERY n = 0, 1, 2, . . . .
By the fundamental orthogonality lemma we infer that there is a sequence of constants cn such that

Fn(x) = cnQn(x), for every n. (7.8)

Let us briefly recall the statement of the fundamental orthogonality lemma.

Fundamental Orthogonality Lemma restated Suppose V is a vector space endowed with inner
product with respect to which {v0, v1, v2, . . . } and {w0, w1, w2, . . . } are two orthogonal systems of
non-zero vectors. Further assume that

span(v0, v1, . . . , vk) = span(w0, w1, . . . , wk), for every k = 0, 1, 2 . . .

Then, for certain scalars ck (k = 0, 1, 2 . . . ),

vk = ckwk, for every k = 0, 1, 2 . . .

Normalizing the Hermite polynomials: Now we demand that∫ ∞

−∞
Fn(x)Fn(x)e

−x2

dx = 1.

In other words we need to select cn in such a way that

|cn|2
∫ ∞

−∞
Qn(x)Qn(x)e

−x2

dx = 1.

We now compute explicitly the integral∫ ∞

−∞
Qn(x)Qn(x)e

−x2

dx

from which the value of cn follows at once.
Well,

Qn(x) = ex
2

Dne−x2

= ex
2

(Dn−1(−2xe−x2

))

= (−2x)Qn−1(x)− 2(n− 1)ex
2

Dn−2e−x2

= (−2x)Qn−1(x) + l.o.t

= (−2x)2Qn−2(x) + l.o.t

= . . .

= (−2x)n + l.o.t

Here l.o.t stands for lower order terms. From this we infer that

DnQn(x) = (−2)nn!
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Now, ∫ ∞

−∞
Qn(x)Qn(x)e

−x2

dx =

∫ ∞

−∞
Qn(x)D

n(e−x2

)dx

Integrating by parts n times we get∫ ∞

−∞
Qn(x)Qn(x)e

−x2

dx = (−1)n
∫ ∞

−∞
DnQn(x)(e

−x2

)dx

= 2nn!

∫ ∞

−∞
e−x2

dx

= 2nn!
√
π

With this we get the normalized Hermite polynomials

1

2n/2π1/4
√
n!
ex

2

Dne−x2

(7.9)

Theorem (Completeness of Hermite functions): Let

Hn(x) = (−1)nex
2

Dne−x2

, n = 0, 1, 2, . . . (7.10)

The family of Hermite functions {e−x2/2Hn(x) : n = 0, 1, 2, . . . } forms a complete orthonormal
basis for L2(R). We shall not prove the completeness assertion here. These functions are extremely
important in Quantum mechanics and the study of the Schrödinger equation. We have indicated in
chapter 4 that these functions are eigen-vectors of the Fourier transform operator as an operator on
L2(R). Let us recapitulate this aspect quickly. The differential equation

y′′ − 2xy′ + 2λy = 0

goes over to
u′′ − x2u+ (2λ+ 1)u = 0

where ye−x2/2 = u. The u equation has no u′ term and so the Wronskian of any two solutions is
constant by the Abel-Liouville formula. The other feature is that the u equation is invariant under
Fourier transform so that if u is a solution then so is û.

Now we know that the Hermite functions hn(x) = e−x2/2Hn(x) is a solution of the u equation (with

λ = n) and consequently ĥn is also a solution of the same equation. But hn is evidently in the Schwartz
class and so it its Fouirer transform and their Wronskian must be zero (why?).

Hence the functions hn and ĥn must be multiples of each other namely

ĥn = λnhn

That is to say each hn is an eigen vector of the Fourier transform operator from S onto itself.
What are the eigen-values?
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Exercises:

(1) Prove the following three term recurrence relation for the sequence of Hermite polynomials Hn(x)
given by Hn(x) = (−1)nex

2
Dne−x2

.

Hn+1(x)− 2xHn(x) + 2nHn−1(x) = 0. (7.11)

Write the polynomial −2xHn(x) as a linear combination
∑n+1

j=0 cjHj(x) and proceed as in the
proof of the three term recurrence relation for Legendre polynomials.

(2) Show that the zeros of Hn(x) are all real and distinct. Show that the zeros of Hn(x) and Hn+1(x)
interlace. Use the self adjoint form

d

dx
(exp(−x2H ′

n)) + 2n exp(−x2)Hn = 0.

Imitate the proof of the corresponding theorem for Legendre polynomials.

(3) Show that

exp(−(x− t)2) =
∞∑
n=0

1

n!
Hn(x)e

−x2

tn (7.12)

From this we can get the generating function for the sequence 1
n!
Hn(x).

To obtain this expression we begin with the power series

exp(2zx− z2) = b0(x) + b1(x)z + b2(x)z
2 + . . .

It is easy to see that 0!b0(x) = 1 = H0(x) and 1!b1(x) = H1(x). We now find a three term recurrence
relation for the coefficients bj(x) and compare it with the three term recurrence relation for the sequence
Hn(x). Well, differentiate the equation

D exp(2xz − z2) = (2x− 2z) exp(2xz − z2)

n times and set z = 0. Here D stands for differentiation with respect to z. We get

(n+ 1)!bn+1(x) = n!(2x)bn(x) +

(
n

1

)
(−2)(n− 1)!bn−1(x).

which simplifies to
(n+ 1)bn+1(x)− 2xbn(x) + 2bn−1(x) = 0.

Use induction to complete the argument that n!bn = Hn for all n.

4. Use Cauchy’s formula for the entire function z 7→ exp(2xz − z2) to estimate Hn(x)/n!. For
simplicity assume x is real positive and take a circle C of radius R = 2x centered around the
origin. Then

Hn(x)

n!
=

1

2πi

∮
C

exp(2zx− z2) dz

zn+1

We shall need some reasonable estimate to exchange a summation and integration using the dom-
inated convergence theorem. An essential step in proving completeness of the Hermite functions.
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