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Let us look at a simple case where this theorem is applicable. Consider the function
fla)=lz|, |a[<m

extended as a 27 periodic function. Sketch the graph of the function and check that the function is
Lipschitz. Since the function is an even function,

1 T
bn:—/ f(z)sinnz dx = 0.
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Exercise: Determine all the Fourier coefficients using formulas (1.4)-(1.5) and deduce that

T =4cos(2k — 1)z
=3 kz:; T2k — 1)2

What do you get when = = 07

Partial fraction expansions for trigonometric functions: Begin with the even function f(z) =
cos(az) on [—7, ] where a ¢ Z. The 27 periodic extension is evidently Lipschitz and we can appeal
to the basic convergence theorem. Determine the Fourier coefficients of f(x) and

(i) Show that

1 20 (—=1)"
L2051

cosec(ma) = ot 2T (1.19)
(ii) Show that N
cot(ma) = % 27T_a 2 ﬁ (1.19)
(iii) Show that
coth(ma) = L + 2a 3 ! (1.197)

Ta T a? + n?
n=1

The ubiquitous Gaussian and its Fourier transform: Let us begin by recalling the famous
integral:

/_oo exp(—2?)dr = /7 (1.20)

[e.9]

You no doubt have seen the standard evaluation of this integral.
Exercises: An excellent project would be to look up the various proofs of this important identity.
Here are some suggestions:

(i) Start with setting x = y/ntan 6 in the integral

o] 2 —n
/ (1 -+ x_) dx
0 n
Evaluate the integral in closed form and appeal to Walli’s product formula for /.
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(ii) Prove Walli’s product formula by looking at the chain of inequalities:
/2 /2 /2
/ sin?" 1 9do < / sin®” 0dh < / sin?" 1 9do (1.21)
0 0 0

A natural question is whether the integral (1.20) can be evaluated via Cauchy’s method of residues
. See the interesting comments on this in R. Remmert, Theory of functions, Springer-Verlag, 1991
pp. 413-414. An interesting proof of the evaluation via residues was given my L. Mirsky , The
Mathematical Gazette, Vol. 33 (1949), p. 279.

(iii) Integrate ¢i™** cosec(rz) along a parallalogram with vertices R+ % +iR, R—3+1iR, —R+ % —iR
and —R — 5 — iR. Use Cauchy’s theorem to compute the value of the integral (1.21).

See p. 250 of the book H. A. Priestly, Introduction to complex analysis, Ozxford University Press,
second edition, 2005 .

We shall now turn to the computation of the Fourier transform of the Gaussian.

Theorem:

/_OO exp (—az?) cos Exdr = % exp(—£2 /4a) (1.22)

To prove this, let us denote the integral on the left hand side as (). Differentiating with respect to
& we get
o 1 [>d
r'e) = —/ xexp (—ax?) sin {xdr = 2—/ d—(exp (—ax?)) sin Exdx
_ a)_. dx

o0

Integrating by parts we get

§

I'€) + 5-1(6) = 0.

Solving this linear ODE we get
I(&) = 1(0) exp(—¢*/4a).
Now evaluate /(0) and complete the proof.

Jacobi Theta Function Identity We shall now give another application of the basic convergence
theorem and derive a beautiful identity that is of immense use in number theory . Let us consider the

function:
o

f#) =Y exp(—(t+2mn)?) (1.23)

n=—oo

Exercises: (i) Show that this function is infinitely differentiable.

(ii)) We need to interchange limits and integrals. Look up the conditions permitting this in Rudin’s
Principles of Math. Analysis .

So this is a smooth even 27 periodic function of ¢t and we can apply the basic convergence theorem.
Let us compute the Fourier coefficients of this function.

2may = /_7r f(t)dt = Z /_7r exp(—(t + 2mn)?)dt

n=—oo
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Put t 4+ 27n = wu in the integral and we get

o0

m(2n+1) 00 5
2ray = Z / exp(—u?)du = / e du= /7.

(2n-1) 00

n=—oo

Exercise: Compute the Fourier coefficients a,, using (1.22). Obviously b, = 0 for all n. Check that
the Fourier series for f(t) is given by

f(@) ! ! Zexp(—n2/4) cosnt.

AR

So we have obtained the identity:

o0

Z exp(—(t + 27n)?)

n=—oo

1 1

_ m + ﬁ HZ::I exp(—n2/4) cos nt (1.24)



