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Let us look at a simple case where this theorem is applicable. Consider the function

f(x) = |x|, |x| ≤ π

extended as a 2π periodic function. Sketch the graph of the function and check that the function is
Lipschitz. Since the function is an even function,

bn =
1

π

∫ π

−π

f(x) sinnx dx = 0.

Exercise: Determine all the Fourier coefficients using formulas (1.4)-(1.5) and deduce that

|x| = π

2
−

∞∑
k=1

4 cos(2k − 1)x

π(2k − 1)2

What do you get when x = 0?

Partial fraction expansions for trigonometric functions: Begin with the even function f(x) =
cos(ax) on [−π, π] where a /∈ Z. The 2π periodic extension is evidently Lipschitz and we can appeal
to the basic convergence theorem. Determine the Fourier coefficients of f(x) and

(i) Show that

cosec(πa) =
1

πa
+

2a

π

∞∑
n=1

(−1)n

a2 − n2
(1.19)

(ii) Show that

cot(πa) =
1

πa
+

2a

π

∞∑
n=1

1

a2 − n2
(1.19′)

(iii) Show that

coth(πa) =
1

πa
+

2a

π

∞∑
n=1

1

a2 + n2
(1.19′′)

The ubiquitous Gaussian and its Fourier transform: Let us begin by recalling the famous
integral: ∫ ∞

−∞
exp(−x2)dx =

√
π (1.20)

You no doubt have seen the standard evaluation of this integral.
Exercises: An excellent project would be to look up the various proofs of this important identity.

Here are some suggestions:

(i) Start with setting x =
√
n tan θ in the integral∫ ∞

0

(
1 +

x2

n

)−n

dx

Evaluate the integral in closed form and appeal to Walli’s product formula for
√
π.
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(ii) Prove Walli’s product formula by looking at the chain of inequalities:∫ π/2

0

sin2n+1 θdθ ≤
∫ π/2

0

sin2n θdθ ≤
∫ π/2

0

sin2n−1 θdθ (1.21)

A natural question is whether the integral (1.20) can be evaluated via Cauchy’s method of residues
. See the interesting comments on this in R. Remmert, Theory of functions, Springer-Verlag, 1991
pp. 413-414. An interesting proof of the evaluation via residues was given my L. Mirsky , The
Mathematical Gazette, Vol. 33 (1949), p. 279.

(iii) Integrate eiπz
2
cosec(πz) along a parallalogram with vertices R+ 1

2
+ iR, R− 1

2
+ iR, −R+ 1

2
− iR

and −R− 1
2
− iR. Use Cauchy’s theorem to compute the value of the integral (1.21).

See p. 250 of the book H. A. Priestly, Introduction to complex analysis, Oxford University Press,
second edition, 2005 .

We shall now turn to the computation of the Fourier transform of the Gaussian.

Theorem: ∫ ∞

−∞
exp (−ax2) cos ξxdx =

√
π√
a
exp(−ξ2/4a) (1.22)

To prove this, let us denote the integral on the left hand side as I(ξ). Differentiating with respect to
ξ we get

I ′(ξ) = −
∫ ∞

−∞
x exp (−ax2) sin ξxdx =

1

2a

∫ ∞

−∞

d

dx
(exp (−ax2)) sin ξxdx

Integrating by parts we get

I ′(ξ) +
ξ

2a
I(ξ) = 0.

Solving this linear ODE we get
I(ξ) = I(0) exp(−ξ2/4a).

Now evaluate I(0) and complete the proof.

Jacobi Theta Function Identity We shall now give another application of the basic convergence
theorem and derive a beautiful identity that is of immense use in number theory . Let us consider the
function:

f(t) =
∞∑

n=−∞

exp(−(t+ 2πn)2) (1.23)

Exercises: (i) Show that this function is infinitely differentiable.
(ii) We need to interchange limits and integrals. Look up the conditions permitting this in Rudin’s

Principles of Math. Analysis .
So this is a smooth even 2π periodic function of t and we can apply the basic convergence theorem.

Let us compute the Fourier coefficients of this function.

2πa0 =

∫ π

−π

f(t)dt =
∞∑

n=−∞

∫ π

−π

exp(−(t+ 2πn)2)dt
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Put t+ 2πn = u in the integral and we get

2πa0 =
∞∑

n=−∞

∫ π(2n+1)

π(2n−1)

exp(−u2)du =

∫ ∞

−∞
e−u2

du =
√
π.

Exercise: Compute the Fourier coefficients an using (1.22). Obviously bn = 0 for all n. Check that
the Fourier series for f(t) is given by

f(t) =
1

2
√
π
+

1√
π

∞∑
n=1

exp(−n2/4) cosnt.

So we have obtained the identity:

∞∑
n=−∞

exp(−(t+ 2πn)2) =
1

2
√
π
+

1√
π

∞∑
n=1

exp(−n2/4) cosnt (1.24)
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